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Executive summary

The brain progressively fails with age. Brain aging exacts a massive human toll through a
variety of pernicious effects: it relentlessly strips away memory, identity, and cognition and is
linked to a wide range of deadly neurodegenerative diseases such as Alzheimer’s disease.
Combating brain aging is one of the greatest challenges facing society and is thus critical if we
are to massively extend human lifespan. Even if the function of other aging organs can be
rejuvenated, these efforts will be in vain if we cannot preserve the function of the brain, which
constitutes the cradle of human thought, memory, and identity.

Creating new brain cells to replace aged, dysfunctional ones is one “moonshot” strategy to
combat brain aging. One hurdle is that the brain is a complex multicellular community
comprising different cell-types (e.g., neurons, astrocytes, oligodendrocytes, microglia, vascular
cells, mesenchyme, and others) enmeshed in networks of extracellular matrix and other
components. Creating new brain cells to replace aged, dysfunctional ones may be a viable
strategy to combat brain aging. Either new external cells can be transplanted, or alternatively,
new cells can be created endogenously. Safely replacing aging brain cells with brand new
ones could be transformative and will require intense focus and funding to realize.

Moonshot idea #1: Transplantation of exogenous brain cells or tissues. Cells (e.g., neural
progenitors, neurons, or glia), organoids, or actual brain tissue can be transplanted into the
brain. While transplanting cells into the brain may sound quixotic, there have been multiple
successes thus far, in both human patients and animal models. We need to amplify this exciting
progress in brain cell transplantation.

Neuron transplantation: In clinical trials, transplantation of human fetal brain tissues into patients
with either Parkinson’s disease or Huntington’s disease led to encouraging improvements,
although variability between patients was observed1–5. Alternatively, large numbers of human
neurons can be generated from human pluripotent stem cells (hPSCs, including embryonic or
induced pluripotent stem cells) in a Petri dish. Many transplantation studies of hPSC-derived
neurons or brain organoids in rodent brains have shown successful neuronal maturation and
synaptic integration6–13. Notable findings include high survivability and extension of long-range
axonal projections14–16. In some cases, there is also a marked improvement in animal
neurological function17,18.

Glia transplantation: Glia - which include microglia (the immune cells of the brain) - constitute
about 50% of all brain cells19. Glia malfunction with age and thus targeting or replacing glia is
critical to combat brain aging. Excitingly, drugs can be used to deplete pre-existing microglia
within the brain, followed by infusion of new immune cells into the blood that enter the brain and
create microglia-like cells20–25. This opens the possibility of replacing dysfunctional microglia with
brand new ones, although further work is needed.

Challenges: Generating authentic, functional brain cells or brain tissues; minimizing the risk of
surgical implantation; and overcoming immune rejection (in the event of immune-mismatched
cell delivery).



Moonshot idea #2: Endogenous neurogenesis via stem-cell activation. New brain cells can
be created endogenously from pre-existing neural stem cells found in specific brain regions
(e.g., the subventricular zone and subgranular zone). New brain cells can also be potentially
created in vivo by transdifferentiating brain cells of one type (e.g., glia) into another (e.g.,
neurons) by transcription factor overexpression. Endogenous cell production is advantageous
because it will create immune-matched cells, thus overcoming immune rejection.

Challenges: Activating dormant neural stem cells in the brain to induce proliferation and
migration to injury or disease sites; identity and function of transdifferantiated cells.

Moonshot idea #3: Learning from songbirds and turtles how to create new adult brain
cells. While the birth of new brain cells slows to a trickle in adult humans and mice, other
animals (e.g., songbirds and turtles) continuously create brain cells throughout life. Continued
creation of new brain cells in songbirds is integral to their capacity to continuously learn new,
sophisticated songs throughout life. Can we study songbirds and turtles to understand how to
rejuvenate new brain cell production in adult humans? Biology teems with examples where tools
from one species can ported to another (e.g., CRISPR).

Challenges: Applying cutting-edge transgenic techniques to songbirds and turtles to decode
adult neurogenesis.

Moonshot idea #4: Brain extracellular matrix: understanding and engineering. The field
largely focuses on brain cells, while the extracellular matrix (ECM) that supports brain structure
and function has been largely overlooked. It is technically challenging to edit ECM in vivo,
limiting studies of whether it drives brain aging. Developing new tools and/or therapies to
replace or restructure the ECM will rapidly advance this field.

Challenges: Developing new enzymes/inducers/tools to safely edit brain ECM; test roles of
specific ECM proteins in aging.

Purpose of the Workshop

The Amaranth Foundation, part of the James Fickel family office, is a philanthropic organization
that funds moonshot science, globally, with a focus on longevity research, and brain aging in
particular. In February 2023, the Amaranth Foundation organized a workshop event in San
Francisco consisting of the brightest scientific minds in the neuroscience field. The aim was to
determine where the future of neuroscience research should be directed in extending the
healthy human lifespan, combating neurodegenerative disease, and fostering new
collaborations between the participants and their peers.





1. Cell transplantation

Overview:
● It is critical to develop therapeutics that are “proactive” in targeting the underlying causes

of disease.
● Exogenous transplantation of neuronal and/or glial progenitors is a “proactive” solution

for brain aging.
● Embryonic or induced pluripotent stem cells offer a reliable and scalable source for

production of neuronal and glial cell types.
● Cell replacement therapy is hindered by our ability to generate desired cell types. This is

due to the time it takes to differentiate into mature cell states, the efficiency of cell
differentiation, and the need to optimize for high-throughput expansion and prevent
genomic instability.

Degradation (such as in neurodegenerative disease) or damage (such as in stroke) of the brain
leads to irreversible neuronal loss, and often results in debilitating symptoms such as cognitive
and/or motor function deficits. Current therapeutic strategies are “reactive” to the manifestation
of symptoms—namely, they are prescribed to manage existing symptoms and to limit further
degradation of neurons. It is therefore critical to instead develop therapeutic strategies that are
“proactive” in targeting the underlying causes of disease.

While mammalian brains (compared to other vertebrates) fail to regenerate, there is a small
capacity for the mammalian brain to compensate for cell loss. In neuronal loss, network
restructuring and synaptic plasticity can reduce the overall symptomatic burden. In Parkinson’s
disease, for example, cognitive and functional impairments often occur when almost 80% of the
nigrostriatal dopaminergic neurons are lost26. Whereas in Alzheimer’s disease, an increase in
signal intensity for neuronal circuits recruited for memory compared to healthy controls has



been observed27, highlighting the adaptability of the human brain during disease and even for
those at an older age.

Compensatory mechanisms within the human brain are evident. The brain responds either by
recruiting more neurons to ‘fire’ on any given task, or by recruiting other less affected brain
regions to serve as de-facto motor, sensory or cognitive centers28–30. It is apparent that during
damage to the human brain, some mechanisms of plasticity activate to compensate for cell loss.
However, this plasticity is limited, and in cases where extensive degradation of injury-induced
neuronal loss occurs - or in cases of heightened inflammation - irreversible damage can occur. It
is necessary to develop more “proactive” strategies aimed at preventing or actively treating
age-associated degradation.

Exogenous transplantation as a neuronal or glial replacement strategy is one such “proactive”
solution and can be performed in any affected brain region. However, the disease pathology
and/or cell type or source can affect the clinical outcome. For example, Huntington’s disease is
a good candidate for targeted cell transplantation using striatal medium spiny neurons. This is
due to knowledge of the precise brain region to target and cell type to replace. By contrast, in
cases such as stroke or other traumatic brain injuries, neuronal replacement is far more
complex, due to the various cell types that die in the affected region31. Still, it is worth noting that
transplanted neurons can extend axons and integrate into the existing neural network even after
a stroke32.

The choice of source cells and production of desired cell types is a vital component in the
successful outcome of transplantation. Key criteria, such as availability, expandability, and
differentiation into your desired cell type must be taken into consideration (see section 2).
Groundbreaking work using cells obtained from fetal tissue directed to differentiate into
dopaminergic neuronal subtypes were transplanted into animal models for Parkinson’s disease,
thus giving birth to the field of cell transplantation. Subsequent data demonstrated good cell
survival and integration into the neural network resulting in improved motor function33,34. In
subsequent decades, clinical trials involving fetal-derived tissue for cell replacement in patients
with either Parkinson’s disease or Huntington’s disease showed encouraging improvements,
although variability between patients was observed1–5.

Embryonic or induced pluripotent stem cells offer an alternative, scalable source for production
of neuronal or glia cell types. Numerous transplantation studies in rodent brains have shown
successful neuronal maturation and synaptic integration, highlighting the power of this
method6–13. Notable findings include high survivability and extended, long-range axonal
projections14–16. In some cases, there is also a marked improvement in behavior17,18.

Cells derived from pluripotent stem cell sources hold great promise as for cell-replacement
therapy. This is because they are able to generate desired cell types upon transplantation35.
However, a number of limitations persist. First, the time taken for stem cells to differentiate into
mature neurons is currently prolonged. Second, the efficient conversion of stem cells into cells
of a defined state is important in order to prevent the development of tumors or unwanted



tissues upon transplantation36. Third, high-throughput expansion of cells in culture
pre-transplantation must be optimized in order to prevent the manifestation of genomic
instability within cells, a hallmark of tumor formation37,38. Despite these limitations, it is evident
that cell replacement therapies have greatly impacted the field in combating brain aging and
traumatic brain injury as marked by successful rodent and clinical trial studies. It is also evident,
however, that a greater effort must now be made to optimize the conditions of the cells
transplanted to increase survivability, the safety profile, and the time taken to produce the cells
in the first place.



2. Principles of stem cell differentiation



Overview:
● The number of cells that are able to differentiate and integrate into existing bran neural

circuitry is relatively small, with a large proportion of cells dying post-transplantation.
● Our understanding of the molecular mechanisms that underpin cell differentiation is

poorly understood.
● Production of a detailed cell differentiation roadmap to produce pure cell populations is a

solution and would offer a limitless supply of cells for downstream applications.

Replacement of aged cells in the brain with younger, healthier cells is thought to restore brain
function39. Recent research in this area has demonstrated that transplanted embryonic neurons
in mice are capable of integrating successfully within the brain and is involved in complex
activities, such as vision and motion35,39,40. However, the number of cells that differentiate and
integrate into the neural circuitry is relatively small, with most cells dying soon after
transplantation41–44. Our understanding of how cells differentiate, and the molecular mechanisms
that underpin this remain poorly understood45. While there are many challenges to making cell
replacement therapy in the brain a reality, the biggest among them is our ability to produce pure
populations of human cells for transplantation from embryonic and induced pluripotent stem
cells. The prospect of producing many different kinds of brain-specific cell types from stem cells
offers production of a limitless supply of “young” cells for cell replacement. This approach also
opens up the opportunity to produce genetically modified cells using CRISPR46,47 and then to
transplant cells that have carry “rejuvenating” genetic modifications that can prolong healthy
brain function, or potentially reverse aging.

Pioneering work in recent years has accomplished the production of over 25 different human
cell types ranging from blood to the brain 48–51. To achieve this, a detailed cell lineage roadmap
outlining the sequence of intermediate cell progenitor states that results in the production of
desired, high purity cell types is needed. The efficiency of this system is down to two key
aspects. First, the simultaneous activation of desired cell types alongside the blocking of
unwanted cell types, and second, the timing of applied signaling factors to induce a change in
cell type, typically within 24 hours. This approach highlights the complexity of controlling cell
states and is in stark contrast to the established norms of differentiation via continuous
activation or inhibition for many weeks.

Generating any desired cell type from stem cells offers a limitless supply for various
downstream applications, such as disease modeling, transplantation/engraftment, and other
basic research concepts. Using a detailed roadmap approach to specific cell type generation
has been successfully reproduced by several academic groups52–58, owing to this platform’s
reproducibility. However, the challenge still remains to generate the thousands of the different
brain cells that exist from stem cells59, opening up the opportunity to provide a limitless supply of
cells from transplantation. The steps to achieve such a goal will involve building a brain-specific
roadmap; identifying the progenitor cells that give rise to brain cell type; and elucidating the
extracellular signals that can induce target cell type. By repeating this process, a detailed map
can be generated for each cell type lineage.



2.1. Neurons

Overview:
● The current standard to differentiate stem cells into brain progenitors, the “dual SMAD

inhibiting” method, is capable of producing forebrain and midbrain cells, but not
hindbrain cells.

● Ex-vivo differentiation into the estimated 110 neuronal subtypes that exist in the brain is
not possible and remains an unresolved challenge in the field.

● Furthermore, the timeline to produce neurons commonly takes weeks to months. The
need to develop strategies to speed up this process remains an open challenge.

The current standard to differentiate stem cells into brain progenitors involves inhibiting TGFβ
and BMP, termed the “dual SMAD inhibition” method60. While this method is capable of
producing cells specific to the forebrain and midbrain13,16,17,61–66, it remains difficult to produce
hindbrain cells, suggesting that these cells are derived from another progenitor type. This
explanation goes against the prevailing model that a single neural progenitor can produce any
brain cell type, and further highlights the complexity of brain development.

This is further complicated due to the multiple subtypes of cells that exist in the brain. For
example, in the cerebral cortex, where our most high-level cognitive functions exist, there are
two major cell types: cortical glutamatergic (excitatory) neurons and GABAergic (inhibitory)
interneurons67–69. Of the cortical excitatory neurons, multiple subtypes exist across six distinct
regions within the cortex70–73, with a further 56 finely-grained excitatory subtypes so far
discovered70. Looking at the cerebral cortex in its entirety, it is estimated that over 110 neuronal
subtypes exist70, underscoring the sheer challenge of being able to produce all of these cell
types.

In order to generate cells for transplantation, the infrastructure to reliably expand and generate
desired brain cell types in a time- and resource-efficient manner remains an unresolved
challenge. Currently, differentiation of stem cells into neurons is a lengthy process taking weeks
to months74. Work to rapidly and efficiently generate specific types of desired brain cells is
pivotal for future cell replacement therapy. Further research into extracellular signaling factors75,
extracellular matrix76, and/or small molecules77 would be promising first steps to resolve this
challenge.



2.2. Glia – microglia, astrocytes, and oligodendrocytes

Overview:
● Our understanding of differentiating stem cells into glia is poor. This approach not only

takes several months but produces ‘impure’ glial populations. Maturation of glial
progenitors into cells of a defined state with a high degree of purity is an unresolved
challenge in the field.

● Microglia cell replacement offers an alternative method for neurodegenerative treatment.
However, a major obstacle to microglia transplantation is due to resident microglia being
highly regulated – making transplantation difficult.

● Pharmacological depletion of resident microglia using colony-stimulating factor 1
(CSF1R), followed by the transplantation of CSF1R resistant microglia offers a potential
therapeutic strategy.

While great strides have been made in the field of cellular differentiation and reprogramming for
neural progenitors into brain specific cell types, there is an unmet challenge in generating glia –
microglia, astrocytes, and oligodendrocytes. Glia comprises about 50% of all brain cells19, and
there are multiple types of glia. Microglia are long-lived resident immune cells of the brain,
acting as the first line of defense against invading pathogens. Activation of microglia, therefore,
is an important protective mechanism in maintaining a healthy brain state78. Astrocytes are key
regulators of brain function, promoting neurogenesis and synaptogenesis (the formation of
synapses between neurons), and controlling blood brain barrier permeability79.
Oligodendrocytes wrap myelin (a multilayered sheath of membrane) that insulate around the
axon of neurons to enable fast electrical communication between cells80.

In age-associated neurodegeneration (such as Alzheimer’s or Parkinson’s disease), dysfunction
of the glia is one of the major drivers of disease manifestation81,82. Generation of these pure,
‘non-neuronal’ cell types would enable future cell-replacement therapies capable of combating
brain aging. However, generation of glia in this way is notoriously challenging, with current
efforts taking months to create ‘impure’ cell populations74. Furthermore, the maturation of glia
precursors into cells of a defined state remains undetermined with regards to which signaling
factors to use, resulting in “unguided” differentiation at the final stages. Our understanding of the
molecular mechanisms in glial biology remains poorly understood and an open challenge in the
field. Applying a similar roadmap strategy, as highlighted above, would be a significant step in
the right direction.

In more recent years, significant attention has been devoted to microglia. Microglia play a key
role in maintaining neural circuitry and blood brain barrier development83,84. In some
neurodegenerative diseases, such as Alzheimer’s, a high proportion of genes that confer
genetic risk are derived from microglia85–88, highlighting the key role microglia play in maintaining
normal brain homeostasis. Current therapeutic approaches targeting microglia are primarily
pharmacological89–91 – though some studies have explored microglia transplantation as a
replacement of existing microglia in the brain20–25. A major obstacle to microglial cell
replacement is that resident microglia are highly regulated, and engraftment of new, exogenous



microglia is very challenging92. One solution is to deplete the resident microglia via
pharmacological depletion with colony-stimulating factor 1 receptor inhibitors (CSF1Ri)
alongside bone marrow transplantation of peripheral monocytes to infiltrate the brain21,25.
However, this approach is highly risky due to the irradiation or chemotherapy required to enable
engraftment of peripheral myeloid cells. Even with successful long-term engraftment, the cells
are still functionally and transcriptionally distinct from microglia20,93,94. In addition, the
engraftment efficiency is very low95. It is evident that a simpler, more targeted approach to cell
replacement is needed.

Methods to deliver stem cell-derived microglia that are functionally and transcriptionally more
akin to the resident microglia96,97 and can be delivered without the need for harmful conditioning
must be developed. Recent research has sought to address this issue. Inhibitor resistant
CSF1R microglia derived from immortalized hematopoetic progenitors have successfully been
transplanted into mice. Clearance of resident microglia in the brain with CSF1Ri alongside
replacement and expansion of CSFR1 inhibitor resistant microglia have been shown to exhibit
similar gene expression profiles and activation response to inflammation98. However, future work
in the field is needed to assess the potential aberrant effects of replacing resident microglia with
engineered, drug-resistant microglia and to assess downstream effects such as longevity and
long-term function. This approach opens up the opportunity to increase the efficiency of
microglia replacement whilst reducing the overall risk to health compared to other methods.
Further cell engineering capabilities would enable future transplantations with microglia that
significantly improve human health, in addition to the rejuvenating effects of replacement.
Directed research towards cell replacement of other glial cells – astrocytes and
oligodendrocytes – should also be made for targeted therapies towards more glial-specific
diseases.



3. Extracellular matrix

Overview:
● Damage to the extracellular matrix (ECM) is also a major contributing factor to

neurodegeneration. Our understanding of the intrinsic “monitoring” systems that promote
ECM repair are poorly understood and need to be further explored.

● Current therapeutic strategies to treat ECM degradation involve drugs that alleviate ECM
degradation but are unable to reverse the damage already occurred.

Another aspect to aging involves damage accumulated outside of cells, in the extracellular
matrix (ECM). Damage to the ECM is a particular issue, because unlike cells, the extracellular
matrix is more challenging. It is reliant on the resident cell population and may incorporate
molecules produced by different cell types. In general, the components of the ECM are
deposited in the space by the cells and support cell function and viability99. However, in some
cases, over the life of an individual, these deposits do not get turned over and/or the ECM
accumulates damage (due to products of proteolytic ECM remodeling, advanced glycation end
products, and pro-inflammatory or neuroplasticity-inhibiting epitopes)100. While there are
receptors to ECM proteolytic products (such as brevican)101 and short vs. long hyaluronic
acids102, there is a desperate need to better understand the intrinsic “monitoring” system within
cells that is able to recognize and/or repair damage made to the ECM. One major contributor to
neurodegeneration, for example, is damage accumulated to extracellular carbohydrates that are
of particular importance in ECM collagen structure103.

There is always a pool of ECM molecules that are not incorporated into the ECM and could
potentially be recruited. It is hard to exclude that ECM structures exchange their content as
some ECM molecules can be released, diffuse, and then become trapped to another ECM
structure. Neighboring cells can sense the state of the ECM and produce more molecules or
proteases that reshape the ECM structure104. Damage to the ECM is a major contributing factor



to neurodegeneration, modulating oxidative stress susceptibility and cell excitability105,106.
Current therapeutic strategies to treat ECM degradation involve drugs that alleviate ECM
degradation or inhibit synthesis of ECM components but are unable to reverse the damage
already occurred107.

In Alzheimer’s disease, for example, carbohydrate-protein aggregates accumulate over time
resulting in a stiffening of the ECM108,109. Small-molecule solutions to prevent or alleviate the
degradation of the ECM are not “specific” enough, being unable to identify and reverse the
complex damage that occurs as we age107. Furthermore, cell replacement strategies, such as
what we have highlighted above, would not effectively rejuvenate the ECM, due to the already
accumulated damage. Moreover, ECM aggregations enriched in cell migration- and neurite
growth-inhibitory epitopes may substantially limit integration of transplanted cells into the tissue
and their regenerative capacity110.

ECM molecules are crucial to support cell viability and growth, and may be integral to the
success of cell transplantation. However, while every other part of the human body can be
surgically replaced, the brain cannot. An alternative solution to “rejuvenate” the ECM would be
to replace damaged brain tissue with healthy tissue, replete with its own tissue. As our
understanding of differentiating and producing cells of a particular type grows (see section 2),
we could, perhaps, eventually grow tissues and organs that are tailored to each patient with
regards to size and immunological compatibility. While the initial focus will be on treating injury
and disease, it is theoretically possible to replace tissue in otherwise healthy individuals to
reverse aging.



3.1. Other challenges

Overview:
● Progressive replacement of damaged brain tissue with younger, healthy tissue that is

size- and immunologically-matched could reverse the impact of disease, and potentially
reverse brain age in healthy individuals.

The brain, unlike other organs, cannot simply be replaced in its entirety in “one shot” due to the
important functions each region plays in maintaining cognitive function and life. There are two
established principles in neurobiology that support progressive brain tissue replacement. First, it
has been demonstrated that brain region functions can change over time. For example, in a
case of benign gliomas slowly destroying the language centers of the brain, relocation of
language centers in older adults were relocated to other brain centers111. This is in contrast to
language loss due to sudden forms of damage, such as in stroke or traumatic brain injury112. As
long as deterioration/destruction of brain tissue is progressive over time, other brain regions can
act as de-facto brain centers for those being damaged, whether it be language, personality,
sight, or motor function. Second, it is not necessary to understand the intricate development and
function of brain tissue to treat disease or aging. Our brains develop following germinal cells in
fetal development. Research using these cells grafted onto adult rodent brains exhibit an innate
differentiation program that generates functional neocortical tissue113-117. However, despite the
promising results highlighted above, grafting studies thus far have failed to produce functional
tissue in adult human brains and remains an open challenge in the field.

The capacity for neurons (and glia) to regenerate is a significant factor in treating
neurodegenerative disease and aging. In humans this capacity is greatly limited to
neurodevelopment. However, in some mammals, birds, and reptiles, the ability for their brains to
generate new neurons extends well into adulthood118-120. A key component to successful
neuronal regeneration is due to radial glia, specialized brain stem cells give rise to neurons and
glia. During embryonic development, radial glia cells extend long projections from the ventricles
at the center of the brain to the outer surface. These serve as physical “highways” that enable
newborn neurons to migrate from the sites of their birth to their final destinations within the
brain121,122.

However, in adult brains these “highways” disappear and affect how neurons can migrate. In
songbirds, for example, newborn neurons were able to move through adult brains via “directed
diffusion” and not via radial glia123. In an adult mouse brain, injected embryonic neurons into the
visual cortex were able to integrate and cause a significant rejuvenation effect to vision34.
However, work to understand the migration and integration process of neurons is poorly
understood for brain regeneration. Possible solutions include controlled cell migration using
implantable devices with chemical ligands or magnetic fields, or transplantation of cells sensitive
to ultrasound to activate specific patterns of neuromodulation? These remain open challenges in
the field.



4. Endogenous cell activation

Overview:
● In the adult mammalian brain, there are two neural stem cell (NSC) regions, the

subventricular zone (SVZ) and subgranual zone (SGZ) capable of producing neurons
and glial cells.

● These calls can become “activated”, proliferate, and migrate to different brain regions as
they slowly differentiate.

● The capacity for NSC activation, differentiation and migration in the aged brain is greatly
diminished, resulting in cognitive decline.

● Identifying the genes that can impact neural stem cell (NSC) activation is vital in
understanding and preventing the effects of brain aging.

● Current work in the field has identified only a handful of genes, due to limited
experimental designs in the past.

● Innovative work developing a high-throughput, genome-wide screen in old mammalian
cells and rodents has identified over 300 genes which, if downregulated, become
capable of activating old NSCs.

● Further work to expand this screen in more relevant models (such as non-human
primates, or in human brain tissue) is required, and remains an unresolved challenge in
the field.



In the adult mammalian brain, there are several neural stem cell (NSC) regions that have the
capacity to differentiate and produce neurons or glial cells capable of repairing tissue124–208. The
subventricular zone (SVZ) of the lateral ventricles in the cerebellum and subgranual zone (SGZ)
in the hippocampus are the two active regions in the adult brain125,126,127,130–133. Both have the
capacity to generate thousands of neurons or glial cells134,135. Within the SVZ, much like the
SGZ, a population of quiescent NSCs becomes ‘activated’ and proliferates, generating neural
progenitors that commit to a particular cell lineage. These ‘committed’ cells migrate out of the
niche towards the olfactory bulb and slowly differentiate into neurons. However, in the aging
brain, NSC activation is severely impacted, resulting in decreased regeneration and cognitive
decline124,125,130,136–139. This is associated with changes in the structure and composition of the
ECM in the SVZ neurogenic niche. Differentiation of glial progenitor cells can produce
astrocytes or oligodendrocytes. Production of these cells is important for maintaining normal
brain homeostasis and motor function.

Identifying the genes that can impact NSC activation is an important step in preventing the
effects of aging in the brain. While seminal work has already been conducted to elucidate “old”
NSC activation, only a few signaling pathways and transcriptional regulators have been
discovered140–149. This is due to the limited capacity of the studies conducted, only focusing on a
few genes at a time. A high-throughput, scalable approach is required, capable of screening
hundreds or thousands of genes at a time over key aging timepoints.

As aging occurs at a cellular and organismal level, a screen able to capture a complete dataset
on both levels will be highly informative. In 2022, innovative research has developed a
CRISPR-Cas9 genome-wide screen for old mammalian cells and organisms capable of
identifying novel gene targets whose manipulation potentially could restore brain function. Initial
findings have discovered over 300 genes which, when downregulated (“switched off”), activate
old NSCs in cell culture, with gene regulatory pathways associated with top hits in glucose
metabolism, ribonucleoprotein structures (important for regulating gene expression), and
primary cilia (critical for regulating key signaling pathways). Most of the aforementioned
pathways have previously not been associated with NSC activation and/or regulation,
highlighting the power of this approach150.

Identifying genetic interventions to rejuvenate the adult brain would be the “holy grail” of adult
neurogenesis research. Such an approach could greatly impact the rejuvenation potential of old
tissues, improving cognitive and motor functions, and reverse overall brain age.

An alternative approach to endogenous cell activation via the SVZ and/or SGZ is to directly
transdifferentiate pre-existing glial cells into neurons in vivo. Such an approach would avoid the
need to produce clinical grade, pure cell populations; the trauma associated with direct
transplantation; and the risks of graft rejection. Work in this area has already established direct
conversion from astrocytes to neurons via transduction of various neurogenic factors151,152, and
conversion of pericytes (cells that line blood vessels) into neurons in-vitro153. However, due to
the complex and dynamic environment of the brain, direct conversion into neurons is a



challenge. Some controversy exists, however, with some data suggesting that reprogrammed
astrocytes into neurons in-vivo were actually just targeted neurons which stayed as neurons154.

Initial work in this area has shown that glial cells are able to convert into neurons following injury
in vivo, however, the subsequent neuronal populations were immature, the conversion rates low,
and newly born neurons died early155. However, with the expression of neurogenin 2 (a
neurogenic factor), vitamin D and E, around 90% of glial cells were able to convert into mature,
morphologically complex neurons following injury. Interestingly, both astrocytes and
oligodendrocytes are able to convert into glutamatergic deep layer neurons following injury,
whereas oligodendrocytes can only generate GABAergic neurons156,157, suggesting that starting
cell-type plays a key role.

In a mouse model of Alzheimer’s disease, an increase in conversion efficiency for astrocytes to
neurons in old vs. young mice was observed, indicating the important of the microenvironment
on cell fate157. Furthermore, the brain region can also greatly affect direct reprogramming. In the
striatum, glial cells converted into mature neurons following Sox2 and BDNF expression,
whereas cortical derived glia converted into immature neurons or failed to convert
altogether158–160. Similar observations have been made in other cases161,162.

Altogether, it is evident that while direct conversion is possible, producing subtype-specific cell
types remains a challenge. Conversion and maturation of new neurons may be dependent on
the local circuitry for reprogramming163,164, which is lost in aging and disease. Work to elucidate
the complex signaling factors that can efficiently convert glia into neurons, and robust targeting
of those factors to target brain regions would make for an effective therapeutic approach to brain
injury and age associated disease.



5. Concluding remarks:

The understanding of adult neurogenesis in humans would be revolutionary. Such a discovery
would fundamentally transform our healthcare system. The way we treat neurodegeneration or
traumatic brain injury would be “proactive,” rather than “reactive” to symptoms. It is not clear
how this issue should be addressed; but three major avenues seem promising.

First, we must get better at generating desired cell types for cell replacement therapies. As
covered in section 2, production of over 25 different cell types to a high degree of purity has
already been achieved. By “road-mapping” to a higher degree of specificity, it is possible to chart
the differentiation and production of currently unattainable cell types – hindbrain derived
neurons, glia, and the hundreds of neuronal subtypes that extend throughout the brain. Second,
as covered in section 1 and 3, the avenues to cell and/or tissue replacement as a means to treat
neurodegeneration, injury, or aging offer distinct clinical outcomes. It is vital that the quality of
cells transplanted be of a high degree of purity to enable suitable migration and integration.
Previous research has explored the potential of neuronal transplantation as cell replacement,
with varying results in both animal models and humans.

Much of neurodegeneration, injury, and aging is mediated by inflammation; in turn, inflammation
is thought to be controlled to a large extent by glia. Glia have emerged as having paramount
roles in brain health and disease, and therefore glial transplantation offers an alternative
approach to treat aging and disease. By transplanting glia, we gain the opportunity to modulate
inflammation and ultimately brain health. However, our ability to produce glia safe for cell
replacement therapy remains underdeveloped. Tissue replacement, in contrast to cell
replacement, is a strategy that replaces damaged cells as well as the supportive ECM. As we
age, the ECM changes and stiffens, likely accelerating decline. Tissue replacement
encompassing both cells and ECM offers the opportunity to reverse the effects of
neurodegeneration and aging in general.

Finally, section 4 covers the “holy grail” in the neurogenesis field - namely, creating new neurons
or glia endogenously within the brain itself - and consequently, developing ways to activate the
stem cell niche contained within the SVZ and SVG as a means of cell replacement. This would
be the most ideal clinical outcome. However, our understanding of how we can activate and
guide these stem cells remains poor. Recent technologies, using CRISPR, have developed
ways to screen a large number of genes that are implicated in neural stem cell regulation. Using
these technologies, we can discover new ways to activate and control cell fate for treatment of
disease and old age.
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