

Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica

Nalini M. Nadkarni^{1*}, Douglas Schaefer², Teri J. Matelson³ and Rodrigo Solano⁴

¹The Evergreen State College, Olympia, Washington 98505, USA ²Terrestrial Ecology Division, CEER, P.O. Box 363682, San Juan, Puerto Rico 00936, USA ³720 York Avenue, San Francisco, California 94110, USA ⁴Monteverde, Apartado 5655, Santa. Elena, Puntarenas, Costa Rica

Submitted: 18. January 2001 Accepted: 15. July 2001

Summary

In many tropical and temperate forests, live and dead components of canopy-held organic matter (COM) form communities that are distinct from terrestrially rooted plant and forest floor soil communities, but that interact with whole-forest processes. We quantified some of the soil characteristics of dead organic matter held within the canopy of mature trees in a tropical lower montane forest of Monteverde, Costa Rica, and compared them to soils from the upper horizons on the ground. The concentration of canopy organic matter was significantly higher than terrestrial soil, but similar for P and Ca. Canopy humus had very low pH compared to terrestrial soils. The terrestrial soil had a tenfold greater amount of extractable cations, but the C/N ratios and cation exchange capacity of COM and the upper soil horizon did not differ significantly. Canopy organic matter has rarely been considered in forest ecosystem studies due to its inaccessibility, the lack of rigorous sampling and extrapolation methods, and because its mass is small relative to total forest soil mass. However, in habitats where COM is large, a canopy root-humus mat occurs on branch and trunk surfaces, similar to that which occurs on the forest floor. Organic matter in the forest canopy may thus have more ecological importance than its mass implies, as the nutrient-retaining ca-

0031-4056/02/46/01-024 \$ 15.00/0

^{*}E-mail corresponding author: nadkarnn@evergreen.edu

References

- Dominguez, J., Edwards C. A. (1997) Effects of stocking rate and moisture content on the growth and maturation of *Eisenia andrei* (Oligochaeta) in pig manure. Soil Biology and Biochemistry 29, 743–746.
- Eastman, B. R., Kane, P. N., Edwards, C. A., Trytek, L., Gunadi, B., Stermer, A. L., Mobley, J. R. (2001) The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Science and Utilization 9, 38–49.
- Edwards, C. A. (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards, C. A., Neuhauser, E. F. (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp. 21–31.
- Edwards, C. A., Burrows, I. (1988) The potential of earthworm composts as plant growth media. In: Edwards, C. A., Neuhauser, E. F. (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp. 211–219.
- Edwards, C. A., Bohlen, P. J. (1996) Biology and Ecology of Earthworms. Chapman & Hall, London.
- Edwards, C. A. (1998) The use of earthworms in the breakdown and management of organic wastes. In: Edwards, C. A. (ed) Earthworm ecology. St. Lucie Press, Boca Raton, pp. 327–354.
- Frederickson, J., Knight, D. (1988) The use of anaerobically digested cattle solids for vermiculture. In: Edwards, C. A., Neuhauser, E. F. (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp. 33–47.
- Frederickson, J., Butt, K. R., Morris, R. M., Daniel, C. (1997) Combining verniculture with traditional green waste composting systems. Soil Biolology and Biochemistry 29, 725–730.
- Gunadi, B., Susanto, SJ. A., Sosrodjojo, P. S. (1998) Laboratory and large-scale indoor conditions for culturing two species of redworms (*Eisenia andrei* and *Eisenia fetida*) using tea leaf waste as a food. Proceeding of the 6th International Symposium on Earthworm Ecology. Vigo, Spain, August 30–September 4.
- Kodolova, O. P., Striganova, B. R., Sidorova, T. N. (1994) Comparative study of the reproductive potential in local populations of the manure worm *Eisenia fetida* (Savigny, 1926) (Oligochaeta, Lumbricidae). Ecology (special edition), 449–456.
- Neuhauser, E. F., Kaplan, D. L., Malecki, M. R., Hartenstein, R. (1980) Material supporting weight gain by the earthworm *Eisenia fetida* in waste conversion systems. Agricultural Wastes 2, 43–60.
- Neuhauser, E. F., Loehr, R. C., Malecki, M. R. (1988) The potential of earthworms for managing sewage sludge. In: Edwards, C. A., Neuhauser, E. F. (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp. 9–20.
- Reeh, U. (1992) Influence of population densities on growth and reproduction of the earthworm *Eisenia andrei* on pig manure. Soil Biology and Biochemistry 24, 1327–1331.
- Reinecke, A. J., Viljoen, S. A. (1990a) The influence of feeding patterns on growth and reproduction of the vermicomposting earthworm *Eisenia fetida* (Oligochaeta). Biology and Fertility of Soils 10, 184–187.
- Reinecke, A. J., Viljoen, S. A. (1990b) The influence of worm density on growth and cocoon production of the compost worm *Eisenia fetida* (Oligochaeta). Revue d'Ecologie et de Biologie du Sol 27, 221–230.
- Schwert, D. P. (1990) Oligochaeta: Lumbricidae. In: Dindal, D. L. (ed) Soil biology guide. John Wiley & Sons, New York, pp. 341–356.
- Vinceslas-Akpa, M., Loquet, M. (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (*Eisenia fetida andrei*) chemical analysis and ¹³C CPMAS NMR spectroscopy. Soil Biology and Biochemistry 29, 751–758.

pacity of the root-humus mat layer could play an important role in nutrient conservation for the individual trees and epiphytes whose roots are imbedded within the mats, and for the forest ecosystem as a whole.

Key words: Canopy organic matter, crown humus, epiphytes, soil, nutrient cycling, tropical montane forest

Introduction

In tropical montane forests, live and dead components of canopy-held organic matter form communities that are distinct from terrestrially rooted plant and terrestrial soil communities, but that interact with whole-forest processes. This canopy organic matter (COM) is composed of shoots and roots of vascular and non-vascular plants, abscised leaves of host trees and epiphytes that have been intercepted by branches, arboreal soil, and associated invertebrates, fungi, and microorganisms. This material reaches its greatest abundance and diversity in tropical montane cloud forests (Madison 1977; Gentry & Dodson 1987; Ingram & Nadkarni 1993; Coxson & Nadkarni 1995).

Canopy organic matter influences nutrient cycling by altering ecosystem nutrient pools, pathways, and rates of nutrient fluxes (Pike 1978; Benzing & Seeman 1978; Nadkarni 1984, 1986; Coxson & Nadkarni 1995). In tropical montane forest, live plant components of COM appear to determine the overall structure of canopy communities, and contribute to nutrient exchange by exudation from and uptake by epiphyte roots, mycorrhizae (Maffia et al.1993), and host tree canopy roots (Nadkarni 1981; Sanford 1987). Litterfall derived from live COM can contribute a significant portion of the nutrients and carbon transferred to the forest floor via the litterfall pathway (Nadkarni and Matelson 1992).

In tropical montane forests, the dead components of COM consist of "crown humus" (sensu Jeník 1973), intercepted epiphyte and tree litter, animal feces and frass, decaying bark, and airborne particulates (Torn et al. 1997). Crown humus constitutes a true but hitherto undescribed arboreal histosol. This material is derived principally from epiphytic bryophytes that die and decompose in situ (Clark et al. 1998). It represents a pool of carbon and nutrients that are microbially active, with amounts of microbial biomass and rates of mineralization that are comparable to upper horizons of terrestrial soil (Vance & Nadkarni 1990). However, COM supports significantly lower rates of net nitrification than its terrestrial counterpart, which suggests that nitrogen is more tightly conserved in the canopy than on the forest floor (Vance & Nadkarni 1990). This arboreal soil contributes to whole-ecosystem nutrient cycles; it can be leached of nutrients (Nadkarni 1986) or can absorb and retain nutrients from atmospheric sources through physical, chemical, and biotic processes (Clark 1994, Clark et al. 1997; Clark et al. 2000). This material also provides habitat for a diverse and abundant invertebrate fauna, which includes many of the major groups of decomposers found in terrestrial soil (Nadkarni & Longino 1990). Birds have been recorded as foraging in the crown humus for invertebrates for as much as 20% of their foraging visits (Remsen & Parker 1984; Nadkarni & Matelson 1989).

In tropical montane forests, crown humus dominates arboreal communities, but

5 Nalini M. Nadkarni et al.

has been little studied or compared to organic matter on the forest floor due to difficulties of field sampling and lack of established methods to sample the complex threedimensional crowns of trees with statistical validity. Although crown humus has received some attention as a substrate for roots of epiphytes, vines, or trees, (Klinge 1963; Lyford 1969; Jeník 1973; Pócs 1980; Nadkarni 1981; Sanford 1987; Moore 1989), it has only rarely been quantitatively compared to organic matter on the forest floor or placed in the context of terrestrially rooted material (trees, shrubs, understory plants, and parasites) (e.g., Putz & Holbrook 1989; Vance & Nadkarni 1990).

In this paper, we: 1) quantify chemical characteristics of arboreal soil associated with large branches of mature trees in a primary tropical lower montane forest of Costa Rica; 2) compare characteristics of this material to the upper horizons of terrestrial soil; and 3) discuss the implications of the presence and characteristics of arboreal soil in this forest to ecosystem-level nutrient cycling. This study is part of an ecosystem-level assessment of the ecology of canopy communities and their roles in nutrient cycling and forest dynamics (Nadkarni et al. 2000).

Materials and Methods

Study area

Arboreal and terrestrial soil samples were collected between April and June 1988 in the Monteverde Cloud Forest Preserve (MCFP), Monteverde, Puntarenas Province, Costa Rica (10° 18° N, 84' 48° W). The study area was in primary tropical lower montane moist forest (1480 m.a.s.l.), which is described as Leeward Cloud Forest (Lawton & Dryer 1980). The area is composed of trees 15–30 m in stature, and possessing a well-developed subcanopy (Nadkarni et al. 1995). The epiphyte community is one of the most abundant and diverse recorded (Ingram & Nadkarni 1993; Nadkarni & Wheelwright 2000). The continually moist soils below are derived from volcanic rhyolites, and classified as *Typic Dystrandept* (Vance & Nadkarni 1990). The canopy is exposed to frequent and intense wind and mist events throughout much of the year, especially during the windy-misty season (November – March) and the dry season (April – May) (Clark et al. 2000). The upper tree canopy experiences greater extremes in temperature, and more frequent and extreme wetting and drying cycles than on the forest floor (Bohlman et al. 1995).

In April 1987, a 4 ha area was established in the Research Area of the MCFP. Tree composition, density, basal area, and structural characteristics are reported in Nadkarni et al. (1995). Stem density and stem diameters of trees >2 cm diameter at breast height (DBH) were measured and identified to species. A quartile "climbability index" was assigned to all trees > 30 cm DBH, based on our 17 years of experience with tree-climbing and our assessment of the relative ease, safety, and degree of damage to the tree. Of those with an index of 3 or 4 (33 % of the total), a random subset (15 individuals, Table 1) were climbed using single-rope techniques (Perry 1978) to collect samples of crown humus.

Characterization and comparison of canopy humus and forest floor soil

The majority of arboreal soil is associated with the surfaces of inner branches and branch junctions of large trees (Nadkarni et al. 2000). We climbed to the mid-canopy (14-30 m) of the sample trees and took 3-7 subsamples from all accessible branches greater than 8 cm in diameter within 5 m of the trunk (89 canopy soil samples total). COM was removed from each branch by cutting through live and dead material around the circumference of the branch and peeling the mat away from the branch surface. Branch circumference was recorded at the mid-

26

dle of each segment. We separated the crown humus from other COM components and passed it through a 2 mm sieve to remove roots. Each sample of crown humus was analyzed separately.

A sample of terrestrial soil (FF-H = 0-10 cm, and FF-A = 10-20 cm) was taken from each of 15 randomly located points with a corer (10 cm diameter) on the ground in areas directly adjacent to the trees we climbed. Accumulated standing fine litter and stems were removed before sampling. These samples were bulked to yield a total of six composite samples. Each composite sample was sieved twice (6.5 mm, then 2.0 mm) to provide adequate mixing and to remove as many roots as possible.

Table 1.	Tree ta	ixon and	. size (di	ameter a	it breas	t height,	DBH,	cm)	from	which	mate-
rials for	canopy	/ organic	c matter	were sa	mpled	at the M	Iontev	erde	Cloud	l Fores	t Pre-
serve											

DBH			
Fabaceae	Dussia macroprophyllata	113.0	
Lauraceae	Beilschmiedia costaricensis	89.1	
Lauraceae	Beilschmiedia costaricensis	87.3	
Lauraceae	Beilschmiedia costaricensis	114.2	
Lauraceae	Ocotea tonduzii	60.1	
Lauraceae	Ocotea tonduzii	119.0	
Lauraceae	Ocotea tonduzii	126.2	
Lauraceae	Ocotea tonduzii	100.1	
Fabaceae	Dussia macroprophyllata	153.7	
Moraceae	Ficus tuerckheimii	238.8	
Moraceae	Ficus tuerckheimii	183.3	
Moraceae	Ficus velutina	192.5	
Myrtaceae	Myrcia splendens	101.3	
Sabiaceae	Meliosma vernicosa	92.5	
Sapotaceae	Pouteria reticulata	70.0	

Analytical methods for plant and soil sample

We carried out analysis of pH on fresh material in the Monteverde laboratory. Analyses of elemental content, total exchangeable cations, base saturation, cation exchange capacity, loss-onignition, and total carbon (C) were carried out on air-dried samples in the soils laboratory at the University of California, Santa Barbara.

Subsamples of soils for analysis of nutrients were oven-dried at 105 °C for 24–48 h and were ground in a Wiley Mill to pass a 40 mesh screen. Total elemental composition of samples was analyzed by a modified Kjeldahl wet-oxidation procedure, using H_2O_2 and Li/Se as a catalyst (Parkinson & Allen 1975). A commercial block digester (Technicon BD-40) was used and samples were maintained at 340 °C for two hours after clearing (Nelson & Sommers 1980). Typical sample size was 300 mg and different types of samples were digested in replicates of three each to establish a precision for the procedure. Solutions of organic nitrogen (urea, niacimamide) and organic phosphorus (phytic acid) compounds were analyzed throughout the study to establish accuracy of the digestion procedure for N and P. Pre-treatment for recovery of nitrate was not incorporated in the protocol; separate analysis of NO₃ (extracted with 1 N KCL)

28 Nalini M. Nadkarni et al.

was performed on soils and was typically less than 3 % of total N. A modified indophenol blue colorimetric method (Keeney & Nelson 1982) and a molybdenum blue procedure (Watanabe & Olsen 1982) were used to determine ammonium and phosphate digests. Cations were analyzed on a Varian 006 atomic absorption spectrophotometer.

Soil solution pH of humus samples was determined with an Orion 904 combination electrode in a 5:1 water:soil ratio. Organic carbon was determined by Walkley-Black dichromate digestion using a correction factor of 1.3 (Nelson & Sommers 1980). Loss-on-ignition (an index of organic matter and mineral content) was by ashing in a muffle furnace at 450 °C for 3 h. Cation exchange capacity (CEC) was determined by a modified 10 % NaCl pH 2 leaching procedure on ammonium-saturated material. Exchangeable cations were determined by atomic absorption spectrophotometry in 1 N NH₄ OAc in 1 N KCL extracts (Robertson et al. 1999).

To compare nutrient content and other characteristics (elemental composition, CEC, base saturation (BS), total exchangeable cations (TEC), loss-on-ignition, and pH) between canopy and terrestrial soil samples, a one-way ANOVA was performed with the SYSTAT programming package (Systat, Inc.) with location of soil (canopy, FF-H, FF-A) as the treatment. A post-hoc Tukey test was used to differentiate differences between the treatments. Simple regression analysis was used to explore relationships between branch size and the abundance of crown humus on branches.

Results

The concentration between terrestrial and canopy soils differed significantly of N, K, and Mg, with COM having a higher elemental content (Table 2). Soil from the FF-A horizon was also significantly lower in N than the FF-H horizon. Phosphorus and Ca concentrations were comparable for upper and lower soil horizons and did not differ significantly from COM.

Canopy humus had a very low pH compared to terrestrial soils, and the FF-H horizon was significantly higher than the FF-A horizon (Table 2). The percent ash of COM

Table 2. Mean (and standard deviation) of percent carbon (% C), percent nitrogen (% N), carbon/nitrogen ratio (C/N), nutrient concentration (mg/g dry weight), pH, and percent ash (% ash) of canopy and forest floor soils at 0-10 cm (FF-H) and 10-20 cm (FF-A) below the surface at the Monteverde Cloud Forest Preserve, Costa Rica. Different letters for the superscript within a row indicate a significant difference at the 0.01 level. N.M. = not measured

Characteristic		Location		
	Canopy	FF-H	FF-A	
%C	37.4 (1.9) ^a	27.0 (1.8) ^b	25.3 (2.7) ^b	
%N	$2.4 (0.1)^{a}$	$1.4(0.2)^{a}$	0.9 (0.1) ^b	
C/N ratio	15.5ª	19.2ª	28.1b	
Р	$0.7 (0.2)^{a}$	0.7 (0.1) ^a	0.8 (0.1) ^a	
Ca	5.8 (4.0) ^a	9.5 (2.1) ^a	$7.2(1.7)^{a}$	
Κ	$1.4 (0.5)^{a}$	$0.3 (0.1)^{b}$	$0.4(0.3)^{b}$	
Mg	$1.0 (0.5)^{a}$	$0.6(0.2)^{b}$	$0.4(0.1)^{b}$	
рĤ	3.7ª	4.6 ^b	5.4°	
% ash	4.4 (1.1) ^a	40.0 (7.8) ^b	N.M.	

varied between 3 % and 6 %, which is typical for highly organic histosols. The terrestrial soils had a tenfold greater amount of extractable cations than canopy humus. There was a significant difference in % C and % N between canopy COM and the lower terrestrial soil horizon. The C/N ratios of COM and the floor upper horizon did not different significantly (Table 2).

Total exchangeable cations and cation exchange capacity of canopy humus vs. terrestrial soils were not significantly different at the 0.01 level. The canopy was particularly low in exchangeable cations and high in H^+ and AI^+ (Table 3). Therefore, although there is a high potential for nutrient retention in the interior branch mats and branch junctions, many of the cations have been displaced, and the availability of macronutrient cations to canopy biota (plant roots, invertebrates, microbes) may be very low.

There was no significant relationship between the amount (dry weight) of arboreal soil and substrate size (stem diameter) of the branches (P < 0.05). This is contrary to trends reported for the relationship between live epiphytes and branch substrate at this site (Ingram & Nadkarni 1993) and other forest types (Lyons et al. 2000). However, in this study, we focused on trees and substrates within trees that had the greatest amounts of DOM (inner branches of large, mature trees). Our sample may also have been biased because we were necessarily restricted to trees that were large enough and had a suitable architecture to climb safely, which meant our range of branch diameters was fairly narrow relative to those used in other studies.

Discussion

In the past, organic matter that his held in the canopy – in particular, crown humus – has rarely been considered in forest ecosystem ecology or soils studies due to its inaccessibility, the lack of rigorous sampling and extrapolation methods, and because its biomass appears small relative to total forest biomass. However, recent studies have documented numerous forest types where COM is abundant: tropical montane forests, temperate rainforests, elfin woodlands, and some lowland forests (review in Coxson & Nadkarni 1995).

This material holds ecological importance for five reasons. First, crown humus represents a repository of nutrients and carbon that is an independent but related subsystem within the forest, swelling the nutrient capital of the ecosystem as a whole. In the Monteverde forest, the mass of crown humus is estimated as 20.7 t/ha in the Monteverde forest (Nadkarni et al. 2000), which is equivalent to 62 % of the total canopy organic matter. This is equal to 4 % of the total aboveground biomass. Compared to the labile portion of the forest, it is equivalent to 220 % of the total aboveground nonwoody biomass (Nadkarni et al. 2000).

Second, canopy-held soil is comprised of nutrients that are obtained and retained primarily from allochthonous sources – rain, mist, and dry deposition, i.e., sources that originate outside the system. Experimental work with marked leaves showed that the residency times for intercepted leaves (the major potential autochthonous nutrient source) is extremely short (less than 16 weeks), and so input from decomposition of intercepted leaves is negligible relative to epiphytes' nutrient needs (Nadkarni & Matelson 1991). Many epiphytes (particularly non-vascular plants and filmy ferns) are extremely efficient at capturing nutrients from mist and rain and incorporating them

Table 3. Soil characteristics of arboreal soils (CAN) and soils on the forest floor (FF-H, 0-10 cm; FF-A, 10–20 cm). Data are total exchangeable cations and cation exchange capacity (extracted in ammonium acetate, meq 100 g soil⁻¹); base saturation (%) at ambient pH, exchangeable bases (meq 100g soil⁻¹), extractable Al (Ext. Al, meq 100 g soil⁻¹), and extractable H (Ext H⁺, in KCL, meq 100 g soil⁻¹). Means are presented with standard deviations in parentheses. Different letters for the superscript within a column indicate a significant difference at the 0.05 level

Location	Total	Cation	Percent	Exchangeable Bases				Ext	Ext
	Exchangeable Cations	Exchange Capacity	Base Saturation	Ca	Mg	К	Na	Al	H^{+}
CAN	15.6 ^a	55.4 ª	30.1 ^a	2.5 ^a	1.3 a	0.5 ª	0.4 ª	3.3 a	7.7 ^a
	(6.1)	(13.5)	(15.3)	(2.4)	(1.0)	(0.5)	(0.05)	(0.8)	(4.3)
FF-H	18.9 a	43.6 ª	98.4 ^b	16.1 ^b	2.1 ^a	0.2 ª	0.2 a	0.1 ^b	0.2 ^b
	(12.1)	(12.8)	(3.0)	(6.2)	(0.9)	(0.1)	(0.01)	(0.1)	(0.1)
FF-A	11.9 a	36.9 a	86.9 ^b	6.9 ^b	1.1 ^a	0.05 a	0.2 a	2.8 a	0.8 ^b
	(2.9)	(1.9)	(2.1)	(2.1)	(0.1)	(0.01)	(0.01)	(2.3)	(0.9)

31

into their biomass. These epiphytic plants eventually die and decompose in place to form the bulk of the canopy soil. These mats also efficiently retain nutrients; the negatively charged sites that occur in the mats of these arboreal hisotsols represent loci where cations that arrive from atmospheric sources can be retained and held for subsequent uptake by canopy plants or microbes.

Third, the characteristics of the material, particularly the acidic nature of this substrate, may have a profound effect on within-mat nutrient dynamics. For example, the lack of nitrification in canopy mats documented by Vance and Nadkarni (1990) may be due to the low pH of the crown humus, similar to other peat-dominated soils (Bohn et al. 1985).

Fourth, these mats provide significant habitat for animals of many kinds. Entomologists have documented that the dead organic matter is inhabited by numerous and speciose invertebrates in both tropical and temperate forest canopy mats (Nadkarni & Longino 1990; Behan-Pelletier & Winchester 1998). Many of these are canopy specialists, which are never encountered on the forest floor (Longino & Nadkarni 1990). These invertebrates in turn provide food resources for birds and other arboreal vertebrates (Remsen & Parker 1984; Nadkarni & Matelson 1989).

Finally, canopy root-humus mat occurs on branch and trunk surfaces, similar to that which occurs on the forest floor. Roots that penetrate the arboreal soil may belong to either the canopy-dwelling epiphytes and/or the supporting host trees (Nadkarni 1981, Moore 1989). Experiments with canopy rooting in a tropical montane forest indicated that the presence of crown humus on branches has a significantly positive effect on the initiation and growth rates of canopy roots (Nadkarni 1994). Thus, soils of the forest canopy may thus have more ecological importance than its biomass implies, as the nutrient-retaining capacity of root-humus mat layer could play an important role in nutrient conservation for the individual trees and epiphytes imbedded within the mat, as well as for the forest ecosystem as a whole.

Acknowledgments

We thank the Tropical Science Center and staff at the Monteverde Cloud Forest Preserve for access to and protection of the field site. Eric Vance contributed ideas and reviewed an earlier draft of this paper. Z. Fuentes, G. Vargas, and J. Crisp helped with fieldwork. F. Setaro and K. Clark provided help in the UCSB laboratory. This work was supported by research grants (DEB 90-18006, DEB 96-15341, BIR 96-30316, and DEB 99-74035), and Research Experience for Undergraduates Grant Supplements from the National Science Foundation; the White-hall Foundation; the National Geographic Society Committee for Research and Exploration; and the University of California, Santa Barbara Academic Senate. The Evergreen State College provided support during later stages of this research.

References

- Behan-Pelletier, V. M, Winchester, N.N. (1998) Arboreal oribatid mite diversity: colonizing the canopy. Applied Soil Ecology 9, 45–51.
- Benzing, D., Seeman, J. (1978) Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2, 133–148.

- Bohlman, S., Matelson, T. J., Nadkarni, N. M. (1995) Moisture and temperature patterns of canopy humus and forest floor soils of a montane cloud forest, Costa Rica. Biotropica 27, 13–19.
- Bohn, H. L., McNeal, B. L., O'Connor, G. A. (1985) Soil chemistry. John Wiley and Sons. New York, USA.
- Clark, K. L. (1994) The role of epiphytic bryophytes in the net accumulation and cycling of nitrogen in a tropical montane cloud forest. Ph.D. Dissertation. University of Florida, Gainesville, Florida.
- Clark, K. L., Lawton, R. O., Butler, P. R. (2000) The physical environment. In: Nadkarni, N.M, Wheelwright, N. T. (eds) Monteverde: Ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp. 15–38.
- Clark, K. L., Nadkarni, N. M., Schaefer, D. A., Gholz, H. L. (1997) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Atmospheric Environment 32, 1595–1603.
- Clark, K. L., Nadkarni, N. M., Gholz, H. L. (1998) Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica 30, 12–23.
- Coxson, D., Nadkarni, N. M. (1995) Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In: Lowman, M. L., Nadkarni, N. M.(eds) Forest canopies. Academic Press, San Diego, California, pp. 495–543.
- Gentry, A., Dodson, C. (1987) The contribution of non-trees to tropical forest species richness. Biotropica 19, 145–156.
- Hofstede, R., Wolf, J., Benzing, D. (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14, 37–45.
- Ingram, S. W., Nadkarni, N. M. (1993) Composition and distribution of epiphytic organic matter in a neotropical cloud forest, Costa Rica. Biotropica 25, 370–383.
- Jeník, J. (1973) Root systems of tropical trees. 8. Stilt-roots and allied adaptations. Preslia 45, 250–264.
- Keeney, D., Nelson, D. (1982) Nitrogen-inorganic forms. In: Page, A.L. (ed) Methods of soil analysis, Part 2, 2nd Ed. American Society of Agronomy, Madison, Wisconsin, pp. 643–698.
- Klinge, H. (1963) Über Epiphytenhumus aus El Salvador, Zentralamerika. Pedobiologie 2, 102–107.
- Lawton, R. O., Dryer, V. L. (1980) The vegetation of the Monteverde Cloud Forest Reserve. Brenesia 18, 101–116.
- Longino, J., Nadkarni, N. (1990) A comparison of ground and canopy leaf litter ants (Hymenoptera:Formicidae) in a neotropical montane forest. Psyche 97, 81–94.
- Lyford, W. (1969) The ecology of an elfin forest in Puerto Rico. 7. Soil, root, and earthworm relationships. Journal of the Arnold Arboretum 50, 210–224.
- Lyons, B., Nadkarni, N. M., North, M. P. (2000) Spatial distribution and succession of epiphytes on *Tsuga heterophylla* (western hemlock) in an old-growth Douglas-fir forest. Canadian Journal of Botany 78, 957–968.
- Madison, M. (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2, 1–13.
- Maffia, B., Nadkarni, N. M., Janos, D. P. (1993) Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4, 5–11.
- Moore, P. D. (1989) Upwardly mobile roots. Nature 341, 188.
- Nadkarni, N. M. (1981) Canopy roots: convergent evolution in rainforest nutrient cycles. Science 214, 1023–1024.
- Nadkarni, N. M. (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16, 249–256.

- Nadkarni, N. M. (1986) The nutritional effects of epiphytes on host trees with special reference to alteration of precipitation chemistry. Selbyana 9, 44–51.
- Nadkarni, N. M. (1994) Factors affecting the initiation and elongation of above-ground adventitious roots in a tropical cloud forest tree: an experimental approach. Oecologia 100, 94–97.
- Nadkarni, N. M., Lawton, R. O., Clark, K. L., Matelson, T. J., Schaefer, D. A. (2000) Ecosystem ecology and forest dynamics. In: Nadkarni, N. M., Wheelwright, N. T. (eds) Monteverde: Ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp. 303–350.
- Nadkarni, N. M., Longino, J. T. (1990) Macroinvertebrate communities in canopy and forest floor organic matter in a montane cloud forest, Costa Rica. Biotropica 22, 286–289.
- Nadkarni, N. M., Matelson, T. J. (1989) Bird use of epiphyte resources in neotropical trees. Condor 69, 891–907.
- Nadkarni, N. M., Matelson, T. J. (1991) Litter dynamics within the canopy of a neotropical cloud forest, Monteverde, Costa Rica. Ecology 72, 2071–2082.
- Nadkarni, N. M., Matelson, T. J. (1992) Biomass and nutrient dynamics of epiphyte litterfall in a neotropical cloud forest, Costa Rica. Biotropica 24, 24–30.
- Nadkarni, N. M., Matelson, T. J., Haber, W. A. (1995) Structural characteristics and floristic composition of a neotropical cloud forest, Monteverde, Costa Rica. Journal of Tropical Ecology 11, 481–495.
- Nadkarni, N. M., Wheelwright, N. T. (2000) The ecology and conservation of a tropical cloud forest, Monteverde, Costa Rica. Oxford University Press, New York.
- Nelson, D., Sommers, L. (1980) Total nitrogen analysis of soil and plant tissues. Journal of the Association of Analytical Chemistry 63, 770–778.
- Parkinson, J., Allen, S. (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science and Plant Analysis 6, 1–11.
- Perry, D. (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10, 155–157.
- Pike, L. H. (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81, 247–257.
- Pócs, T. (1980) The epiphytic biomass and its effect on the water balance of two rainforest types in the Uluguru Mountains. Acta Botanica Academie Scientificarum Hungaricae 26, 143–167.
- Putz, F. E., Holbrook, N. M. (1989) Strangler fig rooting habits and nutrient relations in the Ilano of Venezuela. American Journal of Botany 51, 264–274.
- Remsen, J. V., Parker, T. A. (1984) Arboreal dead-leaf-searching birds of the Neotropics. Condor 86, 36–41.
- Robertson, G. P., Coleman, D. C., Bledsoe, C. S., Sollins, P. (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York.
- Sanford, R. L. (1987) Apogeotropic roots in an Amazon rain forest. Science 235, 1062-1064.
- Torn, M. S., Trumbore, S. E., Chadwick, O. E., Vitousek, P. E., Hendricks, D. E. (1997) Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173.
- Vance, E., Nadkarni, N. M. (1990) Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology and Biochemistry 22, 677–684.
- Watanabe, F., Olsen, S. (1982) Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from soil. Soil Science Society of America Proceedings 29, 677–678.

Tropical Bryology 20: 63-70, 2001

Epiphytic bryophytes of Monteverde, Costa Rica

Mark C. Merwin¹, S. Robbert Gradstein², and Nalini M. Nadkarni^{1, 3}

¹The Evergreen State College, Olympia, Washington 98505 U.S.A.

²Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen,

Germany

³Author for correspondence: nadkarnn@elwha.evergreen.edu

Abstract: A survey of the literature and collections in the Monteverde Cloud Forest Preserve and adjacent pastureland yielded a total of 198 epiphytic bryophyte taxa (120 species of hepatics in 50 genera, 77 species of moss in 48 genera, and 1 hornwort): 178 in the primary forest, 63 in the secondary forest, and 84 in the pastureland.

Tropical montane forests support a tremendous abundance and diversity of epiphytic plants. Historically, vascular epiphytes have received more attention from researchers than epiphytic non-vascular plants (Nadkarni et al. 2001), and bryophytes in the tropics are generally poorly studied (Gradstein et al. 2001). The Monteverde Cloud Forest Reserve (MCFR) is one of one of the most studied Neotropical montane cloud forests (Nadkarni and Wheelwright 2000), and the bryoflora of MCFR is fairly well known (Reed and Robinson 1971; Gradstein 2000; Morales 2000). Epiphytic bryophytes of Monteverde have also been the focus of several ecological investigations concerning epiphytic bryophytes (Nadkarni 1984; Monge-Nájera 1989; Nadkarni and Matelson 1989, 1992; Ingram and Nadkarni 1993; Matelson et al. 1993;

TROPICAL BRYOLOGY20 (2001)

Clark 1994; Sillett *et al.* 1995; Clark *et al.* 1998a, b; Gradstein 2000; Morales 2000; Nadkarni 2000; Nadkarni *et al.* 2000a,b; Gradstein *et al.* in press).

In this paper, we bring together data that concern work on epiphytic bryophyte species diversity across a gradient of human-induced disturbance (i.e., primary forest, 35 year-old secondary forest, and pastureland). First, a list of epiphytic bryophytes known to occur in primary forest and secondary forest of the MCFR and adjacent pastureland was compiled from the literature (Sillett *et al.* 1995; Gradstein *et al.* in press). We supplemented this with collections involving destructive sampling of trees in the primary forest and secondary forest. In primary forest, species recorded as growing epiphytically on the trunk bases (0-1 m above the ground), shrubs, and treelets in the forest understory by Gradstein *et al.* (in press) were excluded unless the taxa were also reported as growing ≤ 3 m above the ground on tree trunks and/or on branches in the canopy by Sillett *et al.* (1995) or Merwin and Nadkarni (*unpubl. data*).

A total of 198 epiphytic bryophyte species (120 hepatics, 77 mosses, 1 hornwort) have been recorded: 178 species in the primary forest (111 hepatics, 66 mosses, and 1 hornwort), 66 species in the secondary forest (32 hepatics, 31 mosses), and 84 species in the pastureland (47 hepatics, 37 mosses) (Table 1). Most of the mosses of Monteverde are widespread species, but hepatics include several uncommon ones not previously recorded from Costa Rica (Gradstein et al., 1994), including Adelanthus carabyensis, Bazzania affinis, Calypogeia crenulata (= Mnioloma crenulata), Colura ulei, Frullania laxiflora, Lophocolea connata, Marchesinia robusta, Plagiochila deflexirama, P. rudischusteri, Prionolejeunea schlimiana, Radula antillana, R. tenera, and Syzygiella pectiniformis. The Monteverde Cloud Forest is also one of the few localities of the rare Costa Rican endemic liverwort Calypogeia rhynchophylla (= Mnioloma rhynchophylla), known otherwise from only two localities on the mailand and from Cocos Island (Dauphin 1999). The rare endemic Nowellia reedii Robins., described from Monteverde (exact locality unknown) and not recorded anywhere else, was not found during this study.

Study Area

Research was carried out in the Monteverde Cloud Forest Reserve (MCFR) (10°18'N, 84°48' W, elevation ca. 1500 m), in the Cordillera de Tilarán, Costa Rica. The forest of MCFR is classified as tropical lower montane wet forest in the Holdridge Life Zone System (*sensu* Holdrige 1967) and further described as Leeward Cloud Forest by Lawton and Dryer (1980). Average annual rainfall is 2,000 - 2,500 mm y⁻¹, with an additional 20% contributed from mist (Clark 1994). There are three seasons: wet-misty season (November - January), dry season (February- April), and wet season (May -October). Detailed descriptions of the climate, geology, and vegetation of Monteverde are in Nadkarni and Wheelwright (2000). Fieldwork was conducted in permanent study plots located in the Research Area of MCFR and adjacent pastureland.

Acknowledgments: We thank Gregorio Dauphin, Ingo Holz, Zach Magombo, Maria Morales, Michelle Price, and Ronald Pursell for assisting with identifications. Special thanks to Bruce Allen, Steve Churchill, and Elena Reiner Drehwald for making numerous identifications. Rigo Solano, Jeremy Donaghue, Sylvia Englund, Leah Lessen, Robert Lücking, Gretchen Vos and Steve Yanoviak assisted with the fieldwork. The first author thanks the staff of the herbaria of the University of Göttingen (GOET), Missouri Botanical Garden (MO), and Universidád de Costa Rica (USJ) for assistance during research visits. Vouchers were deposited in USJ. Research was supported by National Science Foundation grants (BIR 9975110, DEB 9974035, INT 9981531, DEB 9615341).

References

- Clark, K. L. 1994. The role of epiphytic bryophytes in the net accumulation and cycling of nitrogen in a tropical montane cloud forest. Ph.D. dissertation, University of Florida, Gainesville, Florida.
- Clark, K. L., N. M. Nadkarni, and H. L. Gholz. 1998a. Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica 30:12-23.
- Clark, K. L., N. M. Nadkarni, D. Schaefer, and H. L. Gholz. 1998b. Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14:27-45.
- Dauphin, G. 1999. Bryophytes of Cocos Island, Costa Rica: diversity, biogeography and ecology. Revista Biologica Tropicál 47:309-328.
- Holdridge, L. 1967. Life zone ecology. Tropical Science Center, San José, Costa Rica.
- Gradstein, S. R. 2000. Bryophytes. In: N. M. Nadkarni & N. T. Wheelwright (eds.) Monteverde: ecology and conservation of a tropical montane forest, pp. 78-79. Oxford University Press, New York, New York.
- Gradstein, S. R., S. P. Churchill, N. Salazar Allen. 2001. A Guide to the Bryophytes of Tropical America (Memoirs of the New York Botanical Garden, Vol. 86). New York Botanical Garden, Bronx, New York.
- Gradstein, S. R., D. Griffin III, M. I. Morales, and

N. M. Nadkarni (in press). Diversity and habitat differentiation of mosses and liverworts in the cloud forest of Monteverde, Costa Rica. Caldasia.

- Gradstein, S. R., A. Lücking, M. I. Morales & G. Dauphin. 1994. Additions to the hepatic flora of Costa Rica. Lindbergia 19:73-86.
- Ingram, S. W., and N. M. Nadkarni. 1993. Composition and distribution of epiphytic organic matter in a Neotropical cloud forest, Costa Rica. Biotropica 25:370-383.
- Lawton, R. O., and V. Dryer. 1980. The vegetation of the Monteverde Cloud Forest Reserve. Brenesia 8:101-116.
- Matelson, T. J., N. M. Nadkarni, and J. T. Longino. 1993. Survivorship of fallen epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Ecology 74:265-269.
- Monge-Nájera, J. 1989. The relationship of epiphyllous liverworts with leaf characteristics and light in Monteverde, Costa Rica. Cryptogamie, Bryologie, Lichénologie 10:345-352.
- Morales, M. 2000. Plants growing on living leaves. In N. M. Nadkarni and N. T. Wheelwright (Eds.). Monteverde: ecology and conservation of a tropical cloud forest, pp. 80-81. Oxford University Press, New York, New York.
- Nadkarni, N. M. 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249-256.
- Nadkarni, N. M. 2000. Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32:358-363.

- Nadkarni, N. M., and T. J. Matelson. 1989. Bird use of epiphyte resources in Neotropical trees. Condor 91:891-907.
- Nadkarni, N. M. & T. Matelson. 1992. Biomass and nutrient dynamics of epiphyte litterfall in a neotropical montane forest, Costa Rica. Biotropica 24:24-30.
- Nadkarni, N. M. and N. T. Wheelwright (eds.). 2000. Ecology and natural history of a tropical montane cloud forest, Monteverde, Costa Rica. Oxford University Press, New York, New York.
- Nadkarni, N. M., A. R. Cobb, and R. Solano. 2000a. Interception and retention of macroscopic bryophyte fragments by branch substrates in a tropical cloud forest: an experimental and demographic approach. Oecologia 122:60-65.
- Nadkarni, N. M., R. O. Lawton, K. L. Clark, T. J. Matelson, and D. A. Schaefer. 2000b. Ecosystem ecology and forest dynamics. In N. M. Nadkarni and N. T. Wheelwright (eds.). Monteverde: ecology and conservation of a tropical cloud forest, pp. 303-350. Oxford University Press, New York, New York.
- Nadkarni, N.M., M.C. Merwin, and J. Nieder. 2001. Forest canopies, plant diversity. *In* S. Levin (Ed.). Encyclopedia of Biodiversity. Vol. 3. pp. 27-40. Academic Press, San Diego, California.
- Reed, C. F., and H. Robinson. 1971. Bryophytes of Monteverde, Costa Rica. Phytologia 21:6-21.
- Sillett, S. C., S. R. Gradstein, and D. Griffin III. 1995. Bryophyte diversity of *Ficus* tree crowns from cloud forest and pasture in Costa Rica. Bryologist 98:251-260.

TABLE 1. The epiphytic bryophyte taxa found in primary and secondary forest in Monteverde Cloud Forest Reserve and adjacent pastureland following Sillett et al. (1995), Gradstein et al. (in press), and M. Merwin and N. Nadkarni (unpubl.). 1 = Primary forest, 2 = Secondary forest, 3 = Pastureland.

	1	2	3
HEPATICAE			
Adelanthus carabayensis (Mont.) Grolle	x		
Adelanthus decipiens (Hook.) Mitt.	х		
Adelanthus pittieri (Steph.) Grolle	х		
Amphilejeunea reflexistipula (Lehm. & Lindenb.) Gradst.	х	х	
Anoplolejeunea conferta (Meissn.) Schiffn.	х		х
Bazzania affinis (Lindenb. & Gott.) Trevis.	х		
Bazzania denticulata (Lindenb. & Gott.) Steph.	х		
Bazzania gracilis (Hampe & Gott.) Steph.	х		х
Bazzania hookeri (Lindenb.) Trevis.	x		
Bazzania longa (Nees) Trevis.	х		
Bazzania longistipula (Lindenb.) Trevis.	x		х
Bazzania stolonifera (Sw.) Trevis.	х		
Blepharolejeunea saccata (Steph.) van Slag. & Kruijt	х		
Brachiolejeunea laxifolia (Tayl.) Schiffn.	x		
Bryopteris filicina (Sw.) Nees	х	х	х
Cephalozia crassifolia (Lindenb. & Gott.) Fulford	х	х	х
Ceratolejeunea cornuta (Lindenb.) Steph.	х	х	х
Ceratolejeunea filaria (Tayl. ex Lehm.) Steph.	х	х	х
Ceratolejeunea patentissima (Hampe & Gott.) Evans		х	
Cheilolejeunea adnata (Kunze) Grolle	х		х
Cheilolejeunea inflexa (Lehm.) Grolle		х	х
Cheilolejeunea rigidula (Mont.) Schust.	х	x	х
Cheilolejeunea trifaria (Reinw. et al.) Mizut.			х
Colura ulei JovAst.	х		
Cyclolejeunea convexistipa (Lehm. & Lindenb.) Evans	х		
Cyclolejeunea luteola (Spruce) Grolle	х		
Cyclolejeunea peruviana (Lehm. & Lindenb.) Evans	х		
Cyrtolejeunea holostipa (Spruce) Evans	х		
Dicranolejeunea axillaris (Nees & Mont.) Schiffn.	х		
Diplasiolejeunea alata JovAst.	х		
Diplasiolejeunea cavifolia Steph.	х		
Diplasiolejeunea johnsonii Evans	x		
Diplasiolejeunea pellucida (Meissn. ex Spreng.) Schiffn.	х		
Drepanolejeunea cf. bidens Steph.	х		х
Drepanolejeunea inchoata (Meissn.) Evans	х		
Drepanolejeunea lichenicola (Spruce) Steph.	х		
Echinocolea dilatata (Evans) Schust.	х		
<i>Frullania apiculata</i> (Reinw. et al.) Nees	х	х	Х
Frullania arecae (Spreng.) Gott.	х	х	

Frullania brasiliensis Raddi	х	х	x
Frullania convoluta Lindenb. & Hampe	х		x
Frullania kunzei Lehm. & Lindenb.	х		
Frullania laxiflora Spruce	х		
Frullania riojanerirensis (Raddi) Ångstr.	х		х
Harpalejeunea cf. stricta (Lindenb. & Gott.) Steph.			х
Harpalejeunea cinchonae (Nees) Schiffn.	х		х
Herbertus divergens (Steph.) Herz.	х		х
Herbertus juniperoideus (Sw.) Grolle	х	х	x
Herbertus pensilis (Tayl.) Spruce	х		
Jamesoniella rubricaulis (Nees) Grolle			х
Jubula bogotensis Gott.	х		
Kurzia capillaris (Sw.) Grolle	х		
Lejeunea cerina (Lehm. & Lindenb.) Gott.et al.		х	
Lejeunea cf. caespitosa Lindenb.			х
Lejeunea cf. filipes Spruce	х		
Lejeunea controversa Gott.	х	х	
Lejeunea flava (Sw.) Nees	х		х
Lejeunea laetevirens Nees & Mont.	х		х
Lejeunea phyllobola Nees & Mont.	х		
Lepidolejeunea involuta (Gott.) Grolle	х		х
Lepidozia armata Steph.	х		
Lepidozia cupressina (Sw.) Lindenb.	х	х	х
Lepidozia muenchiana Steph.	х		х
Lepidozia squarrosa Steph.	х		
Leptoscyphus porphyrius (Nees) Grolle	х		x
Leucolejeunea xanthocarpa (Lehm. & Lindenb.) Evans	х		х
Lophocolea muricata (Lehm.) Nees	х		
Lophocolea trapezoidea Mont.	х		
Lopholejeunea subfusca (Nees) Schiffn.			х
Marchesinia brachiata (Sw.) Schiffn.	х	х	х
Marchesinia robusta (Mitt.) Schiffn.	х		
Metzgeria albinea Spruce	х	х	х
Metzgeria aurantiaca Steph.			х
Metzgeria decipiens (Mass.) Schiffn.	х	х	х
Metzgeria leptoneura Spruce	х	х	х
Metzgeria liebmanniana Lindenb. & Gott.		х	
Microlejeunea acutifolia Steph.	х		
<i>Microlejeunea bullata</i> (Tayl.) Evans	х		х
Neurolejeunea breutelii (Gott.) Evans	х	х	х
Odontolejeunea lunulata (Web.) Schiffn.	х		
Odontoschisma longiflorum (Tayl.) Steph.	х		
Omphalanthus filiformis (Sw.) Nees	х	×	х
Omphalanthus grandistipulus Steph.	х		
Omphalanthus ovalis (Lindenb. & Gottsche) Gradst.	х	х	х
Pallavicinia Iyelli Hook.	х		
Plagiochila adiantoides (Sw.) Lindenb.	х	x	х

Plagiochila aerea Tayl	х	x	x	
Plagiochila bidens Gott.	х			
Plagiochila cristata (Sw.) Lindenb.	х			
Plagiochila deflexirama Tayl.	х			
Plagiochila diversifolia Lindenb. & Gott.	х	х		
Plagiochila gymnocalycina (Lehm. & Lindenb.) Lindenb.	х	х	x	
Plagiochila laxa Lehm. & Lindenb.	х			
Plagiochila micropteryx Gott.	х	х		
Plagiochila migueliana Lehm. & Lindenb.	х			
Plagiochila patula (Sw.) Lindenb.	х			
Plagiochila raddiana Lindenb.	X	x	х	
Plagiochila stolonifera Lindenb. & Gott	x		N.	
Plagiochila stricta Lindenb.	x			
Plagiochila subplana Lindenb	x			
Plagiochila tenuis Lindenb	x			
Porella swartziana (Web.) Trevis	Y			
Padula antillaana Castla	A V			
Radula antinearia Gastie	X			
Radula trondescens Steph.	х			
Radula gottscheana Tayl.	х	Х		
Radula javanica Gott.	х		2	
Radula tenera Mitt. ex Steph.	х	Х		
Riccardia fucoidea (Sw.) Schiffn.	х			
Scapania portoricensis Hampe & Gott.	х			
Symbiezidium barbiflorum (Lindenb. & Gott.) Evans	х		X	
Symbiezidium transversale (Sw.) Trevis var. hookerianum				
(Gott. <i>et al.</i>) Gradst. & van Beek	х			
Symphyogyna brasiliensis Nees	х			
Symphyogyna brogniartii Mont.	х			
Syzygiella pectiniformis Spruce	х			
Taxilejeunea pterigonia (Lehm. & Lindenb.) Schiffn.	х			
Telaranea nematodes (Aust.) Howe	х			
Trichocolea flaccida (Spruce) Jack & Steph.	х			
Trichocolea tomentosa (Sw.) Gott.	х	х	х	
Tylimanthus cf. approximatus (Lindenb.) Besch.	х			
Tylimanthus laxus Spruce	х			
ANTHOCEROTAE				
Dendroceros crispus (Sw.) Nees	x			
MUSCI				
Acroporium estrellae (Müll. Hal.) Buck & SchäfVerw.	х	х		
Acroporium pungens (Hedw.) Broth.	х		х	
Actinodontium standleyi Bartr.	х	х	х	
Amphidium tortuosum (Hornsch.) Robins.			х	
Brachymenium sp.	х	х		

Bryohumbertia filifolia (Hornsch.) JP. Frahm		х	
Bryum capillare Hedw.	х		
Campylium praegracile (Mitt.) Broth.	х		
Campylopus arctocarpus (Hornsch.) Mitt.	x	х	
Campylopus densicoma (Müll. Hal.) Paris	x		
Campylopus flexuosus (Hedw.) Brid.			х
Campylopus nivalis (Brid.) Brid.	x	х	х
Campylopus savannarum (Müll. Hal.) Mitt.			х
Caribaeohypnum polypterum (Mitt.) Ando & Higuchi	x		х
Daltonia gracilis Mitt.	×	х	
Daltonia longifolia Tayl.	x	х	
Ectropothecium leptochaeton (Schwägr.) Buck.	x		
Fissidens lagenarius Mitt. var. lagenarius		х	
Groutiella apiculata (Hook.) Crum & Steere			х
Groutiella chimborazensis (Spruce ex Mitt.) Florsch.	х	х	
Herzogiella cylindricarpa (Card.) Iwats.		х	
Holomitrium arboreum Mitt.	x		х
Holomitrium pulchellum Mitt.			х
Hypnella diversifolia (Mitt.) Jaeg.	х		
Hypnella pallescens Herz.	х		
Isodrepanium lentulum (Wils.) Britt.	x	х	х
Leiomela bartramioides (Hook.) Par.	x		
Lepidopilum falcatulum Müll. Hal.	Х	х	
Lepidopilum muelleri (Hampe) Spruce	x		
Lepidopilum scabrisetum (Schwägr.) Steere	x	х	
Leptotheca boliviana Herzog	х		х
Leucobryum antillarum Besch.	x	х	х
Leucobryum giganteum Müll. Hal.	x		
Leucoloma cruegerianum (Müll. Hal.) Jaeger	х	х	х
Leucoloma serrulatum Brid.	×	х	х
Macromitrium cf. tonduzii Ren. & Card.	x		
Macromitrium cirrosum (Hedw.) Brid.	x		х
Macromitrium parvirete Bartr.	x		х
Macromitrium podocarpi Müll. Hal.	x	х	х
Macromitrium richardii Schwägr.	x		
Meteoridium remotifolium (Müll. Hal.) Manuel	×	х	х
Meteorium illecebrum Sull.	x		
Mittenothamnium lehmanni (Besch.) Card.	x		
Mittenothamnium reptans (Hedw.) Card.	x		х
Orthodontium pellucens (Hook.) B.S.G.	x		
Orthostichella pentasticha (Brid.) Buck	x		х
Palamocladium leskoides (Hook.) Britt.	x		х
Papillaria deppei (Hornsch. ex Müll. Hal.) Jaeg.		-	х
Papillaria imponderosa (Tayl.) Broth.	x		
Phyliogonium tulgens (Heaw.) Brid.	х	х	х
Pnyllogonium viscosum (P. Beauv.) Mitt.	Х	х	х
Pilotrichella flexilis (Hedw.) Angstr.	х		х

Porotrichodendron superbum (Tayl.) Broth.		х	
Porotrichum cf. guatemalense Bartr.	x	х	
Porotrichum korthalsianum (Dozy & Molk.) Mitt.	x	x	х
Porotrichum longirostre (Hook.) Mitt.	х		
Prionodon densus (Hedw.) Müll. Hal.	х	x	х
Prionodon fuscolutescens Hampe	х		
Pterobryon densum Hornsch.	x	х	
Pyrrhobryum spiniforme (Hedw.) Mitt.	х		х
Rhegmatodon polycarpus (Griff.) Mitt.	х		х
Rhizogonium lindigii (Hampe) Mitt.	х		
Rhynchostegium serrulatum (Hedw.) Jaeg.	х		
Schlotheimia rugifolia (Hook.) Schwägr.	x		X
Sematophyllum subsimplex (Hedw.) Mitt.	х		λ
Squamidium isocladum (Ren. & Card.) Broth.	х		
Squamidium leucotrichum (Tayl.) Broth.	х		
Squamidium livens (Schwägr.) Broth.	x	х	х
Squamidium nigricans (Hook.) Broth.	х		
Syrrhopodon gaudichaudi Mont.	х		х
Syrrhopodon incompletus Schwägr.	х	х	х
Syrrhopodon lycopodioides (Sw. ex Brid.) Müll. Hal.	х	х	
Syrrhopodon prolifer Schwägr.	х	х	х
Thuidium delicatulum (Hedw.) B.S.G.	x	х	
Zelometeorium allionii Manuel			x
Zelometeorium patulum (Hedw.) Manuel	х		
Zygodon liebmanii Schimp.	X		

Synonyms

Campylium hispidulum (Brid.) Mitt. = Campylium praeglaciale (Mitt.) Broth. Frullania exilis Tayl. = Frullania apiculata (Reinw. et al.) Nees Frullania neesii Lindenb. = Frullania kunzei Lehm. & Lindenb. Macromitrium mamillosum Bartr. = Macromitrium cirrosum (Hedw.) Brid. Macromitrium portoricense Williams = Macromitrium podocarpi Müll. Plagiochila acanthoda Lindenb. & Gott. = Plagiochila stricta Lindenb. Plagiochila bursata (Desv.) Lindenb. = Plagiochila aerea Tayl. Plagiochila guilleminiana Nees & Mont. = Plagiochila raddiana Lindenb. Porotrichum mutabile Hampe = Porotrichum longirostre (Hook.) Mitt. Prionodon luteovirens (Tayl.) Mitt. = Priondon densus (Hedw.) Müll. Radula macrostachya Lindenb. & Gott. = Radula javanica Gott. Schlotheima jamesonii (Arnott) Brid. = Schlotheimia rugifolia (Hook.) Schwägr. Thuidium antillarum Besch. = Thuidium tomentosum Besch..

•