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Abstract
As humanity becomes increasingly urbanized and disconnected from

the nonhuman world, nature-based sonic environments are receiving

increased attention from physicians and psychologists for their po-

tential therapeutic attributes. Such benefits include helping to increase

focus, speeding recovery from stress, and reducing healing time from

trauma. Comparing, identifying, and understanding how and which

sets of features from sonic environments hold therapeutic relevance

however remains unclear. Mel (short for melody) frequency cepstral

coefficients (MFCCs)—a popular digital signal processing (DSP) rep-

resentation that engages auditory perception—may be helpful in ad-

dressing this need. In this article, we conduct a preliminary

comparative analysis of four recorded natural environments by ex-

tracting perceptually salient sets of derivative feature signals from their

audio tracks. These feature signals are widely used in the music and

audio information retrieval community and move beyond the sonic di-

mensions illustrated in standard log-frequency spectrograms. We then

apply principal component analysis to visually represent the relative

importance of these feature sets in each environment’s audio, demon-

strating that perceptually linked MFCC features can play a significant

role in signal-based discrimination between natural environments. To

conclude, we discuss applications of DSP advances to research in

acoustic ecology and nature-based sonic therapy and provide sugges-

tions for future research that can inform short- and long-term inter-

ventions aimed at promoting psychological and physical healing. Key

Words: MFCC—Mel spectrogram—Nature-based sonic therapy—Sound.

Introduction

A
rapidly expanding area of evidence-based research has

empirically demonstrated that contact with multisensorial

outdoor natural spaces (places with minimal human in-

fluence) has measurable positive effects on people’s

mental, physical, and emotional health (Bratman, Hamilton, & Daily,

2012; McMahan & Estes, 2015; reviewed in van den Bosh & Bird,

2018). This field of research has even greater relevance today, due to

the steady rise in global urbanism (United Nations, 2018), and

quarantines due to the COVID-19 pandemic. Both phenomena have

required people to sequester indoors and/or self-isolate during out-

door activities (Wright, 2020).

For populations relegated to indoor activities (e.g., urban dwellers,

incarcerated individuals, hospitalized patients, and assisted living

populations), contact with the natural (nonhuman built) world is often

only accessible through digitally delivered means. Although digitally

delivered (technological) audio and visual nature experiences are not

as multisensorial as outdoor experiences (Browning, Saeidi-Rizi,

McAnirlin, Yoon, & Pei, 2020), they can offer broad exposure to di-

verse environments and measurable physical and psychological ben-

efits (Kahn, 2011; Kahn, Severson, & Ruckert, 2009).
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Nature based imagery and sonic environments span a broad di-

versity of habitats. Deciphering the specific content that may provide

optimal therapeutic benefit is an area of active research. Most ex-

perimental studies have focused on visual imagery (Hägerhäll et al.,

2018; Kahn, 2018; Ulrich, 1984; Ulrich, Lunden, & Eltinge, 1993;

Velarde, Fry, & Tveit, 2007).

Nature-based sound therapies, however, are receiving growing

attention from physicians and psychologists for their ability to re-

duce stress, increase well-being, restore attention, and reduce healing

times and recovery from stressful events (reviewed in Erfanian,

Mitchell, Kang, & Aletta, 2019; Supplementary Table S1).

Nature-based sounds are also considered culturally neutral with

the capacity for broad appeal (Cullum, 1997). Audio inputs can more

strongly influence environmental comfort levels than visual inputs

(Preis, Kocinski, Hafke-Dys, & Wrzosek, 2015). An added value of

digital nonvisual sonic therapies is the ability to spark the imagi-

nation in powerfully different and beneficial ways than purely visual

stimuli (Bates, Hickman, Manchester, Prior, & Singer, 2020).

The concept of using nature-based sounds for therapeutic benefits

has deep roots. In the 1860s, the German physician and physicist,

Hermann von Helmholtz, wrote that sounds of the wind and sea could

benefit human psychological health (Koenigsberger, 1906). Inspired

by Helmholtz, American sound technician, Irving Teibel, and neuro-

psychologist Louis Gerstman created a set of albums titled Environ-

ments. Distributed by Atlantic Records, the Environments records

featured soothing, ambient, engineered, and outdoor sound recordings

that catalyzed interest in synthesized nature-based environmental re-

cordings, New Age music, and ambient electronic music, a genre that

eventually grew into a multimillion-dollar industry (How Nature

Sounds Became A Multi-Million Dollar Industry, 2018).

The Canadian composer, Shafer (1977), wrote The Tuning of the

World that popularized the term soundscape and described the power

of environmental sound to impact well-being. Today, a multitude of

nature-based sound-generating machines are marketed to the public

as sleep and calming devices and are popular in online marketplaces.

However, nature-based sonic therapy interventions are still relatively

uncommon compared with nature-based visual interventions (Kang

and Schulte-Fortkamp, 2016).

Rigorous comparisons between the therapeutic value of different

nature-based sound stimuli remain challenging because of the wide

variety of stimuli, stressors, and proxies used to gauge physiological

and cognitive effects (Supplementary Table S1). The number and

diversity of natural sound environments that have been used for

potential therapeutic benefits are limited. Expanding the quantitative

measures that can facilitate efficient and machine-readable feature

comparisons between stimuli in psychologically and perceptually

meaningful ways is central to advancing research and understanding

of nature-based sonic therapies.

Recently, the desire for automated speech, speech recognition,

voice-to-text translations, and music information retrieval (MIR) tasks

(Müller, 2007) has led to the creation of increasingly sophisticated

digital signal processing (DSP) representations including the Mel (short

for melody) scale and Mel frequency cepstral coefficients (MFCCs). This

widely used DSP representation, however, remains underutilized by

acoustic ecologists and sonic therapists. In this article, we suggest that

MFCCs can provide two benefits: (1) a bridge between physical and

perceptual sound measurements and (2) a machine-friendly method to

extract sets of features from natural sonic environments.

These extracted feature sets may not be easily detected by spec-

trograms but could hold therapeutic and ecological relevance. When

analyzed across a large number of recordings of a particular en-

vironment, MFCCs could afford quantitative, reproducible and

comparable abstractions of a natural environment’s sonic signature,

expressed as a collection of perceptually salient time-varying signals.

Bridging physical, physiological, and perceptual measurements

Hearing is a physiological and physical experience with the body

registering sound waves as they hit the eardrum (Javel and Mott,

1988). Natural sonic environments present a complex mixture of

biophony (sounds from nonhuman organisms, e.g., birds and insects),

geophony (geophysical sounds, e.g., wind and waves), and anthro-

phony (human-generated sounds, e.g., traffic, voices, and sirens)

(Krause, 1987). Environmental sounds also vary according to exter-

nal conditions, for example, temperature, humidity, and light levels.

Commonly measured physical metrics include pressure level (am-

plitude), spectrum, and rhythm.

Hearing is also a perceptual experience requiring both semantic

and physical understanding. Van Hedger et al. (2019) report that

listeners’ aesthetic responses to nature sounds do not depend solely

on the acoustic properties of the sound but also on the context in

which the sounds are framed. They report that nature sounds are

aesthetically preferred over urban sounds only when they can be

recognized and associated within the framework of nature. On a

physical level, our skull, ears, and evolutionary history introduce

nonlinearities and distortions into the physical acoustic signals we

receive, perceive, and process. Because we do not perceive frequen-

cies on a linear scale, a sound’s measured amplitude may differ

considerably from the loudness we perceive.

The range of human hearing lies between 20 Hz and 20 kHz, but for

evolutionary reasons, we perceive equal amplitudes more loudly in a

THYS ET AL.

152 ECOPSYCHOLOGY SEPTEMBER 2021

D
ow

nl
oa

de
d 

by
 1

74
.2

42
.1

30
.1

95
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
18

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



band of frequencies centered around our speech (85–255 Hz). As

frequency increases above the level of human speech, for example,

>400 Hz, sounds of equal physical amplitude are perceived as less

loud. Likewise, the human ear perceives a doubling of frequency as a

lower and higher pitch of the same pitch class (‘‘the same note’’), a

relationship known as an octave, without comparable sensitivity to

change in linear hertz.

For example, although frequency differences from 500 to 1000 Hz

and from 8000 to 8500 Hz both span 500 linear hertz, the ear hears

500 and 1000 Hz as equivalent in pitch class, because of the doubling

in frequency, whereas 8000 and 8500 Hz would not be perceived as

equivalent in pitch class (although 8000 and 16,000 Hz would).

Octave doublings span more and more linear hertz as they ascend

the range of audible frequencies, and a given fixed change in linear

hertz becomes a smaller and smaller change in perceived pitch as it

ascends the audible range of frequencies (Monson, Hunter, Lotto, &

Story, 2014). Despite these inherent processing limitations, high

frequencies contain important information for deciphering sound

qualities such as naturalness and overall intelligibility (see table 2 in

Monson et al., 2014).

A well-established tool for quantifying physical aspects of natural

sonic environments is the spectrogram, which shows a continuum of

active frequencies changing in amplitude on a linear scale (Pija-

nowski, Farina, Gage, Dumyahn, & Krause, 2011a; Pijanowski et al.,

2011b). A log-frequency spectrogram illustrates the short-time

Fourier transform (STFT) representation of an audio signal and de-

scribes the spectrum of an audio window as a set of linearly spaced

nonoverlapping frequency bins’ power magnitudes. Additional

spectral features from the STFT data, such as spectral centroid and

spectral roll-off, divide the continuum of audible frequencies into

equally spaced bandwidths along a linear scale, which can then be

compared across environments.

Log-frequency spectrograms versus Mel spectrograms

The Mel [Stevens, Volkmann, and Newman (1937)] frequency

scale can more accurately represent the way humans perceive higher

frequencies and approximate more closely the ear’s frequency and

loudness perception. Mel scales (Stevens et al., 1937) do this by ac-

knowledging the nonlinear perceptual aspect of human hearing.

They create a pitch unit wherein quantitatively equal distances in

pitch sound equally distant to the listener.

When compared with the spectrogram, the Mel spectrogram’s

y-axis displays the power magnitudes of widening and overlapping

filters, with center frequencies that are increasingly spaced in linear

hertz (Suzuki & Takeshima, 2004). The y-axis of a log-frequency

spectrogram on the other hand displays the power magnitudes for

equally spaced and sized frequency bins along a linear hertz scale.

Adjacent Mel filters average together distinct overlapping sets of

linearly spaced frequency bins, much like the ear’s spectrum analyzer

perceives frequency through 24 overlapping filter regions along the

basilar membrane (Long, 2014). Depending on the normalization

technique employed, increasingly high Mel filters may also decrease

in relative amplitude, roughly approximating the frequency-

dependent loudness perception of humans (McFee et al., 2015).

MFCCs: a machine friendly feature extraction methodology

Although Mel spectrograms better align with human perception

than log-frequency spectrograms, the highly correlated overlapping

nature of the Mel filters introduces a problem for machine learning.

Many learning algorithms perform best with less dependent and

fewer overlapping features. To alleviate this issue, the Mel filter

magnitudes’ logs can be analyzed as a sum of cosine waves known as

MFCCs. In other words, MFCCs correspond to the discrete cosine

transform of a Mel frequency spectrogram and provide an alternative

representation. They can be placed into principal component ana-

lyses (PCAs) from which feature contribution heatmaps can be gen-

erated and compared.

MFCCs are widely used as signal features in automatic speech,

speaker recognition, and MIR (Davis and Mermelstein, 1980). How-

ever, they have rarely been used in the field of acoustic ecology. A

handful of studies have reported on their utility, for example, iden-

tification of a variety of animal calls from different species of singing

insects including crickets and katydids to frog calls and birdsongs

(Lee, Chou, Han, & Huang, 2006; Le-Qing and Zhen, 2012; Noda,

Travieso-González, Sánchez-Rodrı́guez, & Alonso-Hernández, 2019;

Ramirez, Ramirez, de la Rosa Vargas, Valdez, & Becerra, 2018). This

article offers a valuable case study of four different natural envi-

ronments (forest with birdsong, rippling stream, mountain winds,

and ocean waves) analyzed with Mel scale and MFCCs to reveal

quantitative and perceptually meaningful differences. Using these

sound parameterizations, feature extraction analyses can augment

our current analytic toolkits and help identify sets of features that can

be tested for their potential sonic therapeutic effects.

Methods
Stimuli

Recordings were selected from the National Geographic Society

archives representing four natural sonic environments (forests with

birdsong, rippling streams, mountain winds, and ocean shorelines).

The qualitative content selections were based on past research of
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therapeutic potential (Supplementary Table S1). Three representative

samples from each environment were chosen based on their sonic

stasis, the absence of sudden disruptive sounds, and minimum du-

ration of *1 min. Each audio sequence was encoded with Advanced

Audio Coding compression (ISO/IEC, 2001) and is available at the

Center for Open Science (https://osf.io/vhaxf/files/). All data and

analysis code can be found on GitHub at (https://github.com/

jefftrevino/nature-nurtures).

Analysis

All audio analyses were undertaken with the libROSA Python

package for music and audio analysis (McFee et al., 2015). Each audio

track included three discrete 1 min samples of each specific envi-

ronment, separated by *1 s of silence, and *1 s fades at the endings

and entrances. For each of the four environments, the stereo audio

files were mixed down to monaural audio and downsampled to

22,050 samples per second.

The monaural file was then analyzed as time series data (as a

digital representation of a time-varying electrical signal) to extract

feature data from the audio of the entire environment’s three-

segment file. The applied Fourier analysis algorithm treated the audio

signal as a sequence of overlapping frames, and derived values for

equally spaced frequency bins for each frame. All features other than

MFCCs were extracted with a hop length of 512 samples and a frame

length of 2048 samples, or about a 10th of a second.

Feature description and extraction

Audio selections were analyzed as a time-varying electrical signal

to derive 25 new audio signal features* including 20 MFCCs and

5 physical spectral features: root mean square, spectral centroid,

spectral bandwidth, spectral roll off, and spectral novelty (Table 1).

Spectral features describe how the sound’s energy is distributed and

concentrated among the various audible frequencies in each analysis

window. These features are relative magnitudes and, after extraction,

were normalized to zero mean and unit variance.

Creation of log-frequency and Mel spectrograms

After the spectral features were extracted from the signals, log-

frequency spectrograms were made by applying STFTs to each envi-

ronment’s audio. Each analysis window contains magnitude data for

1025 equally sized frequency bins, which are linearly spaced in the

frequency domain. The Fourier data were then translated into Mel

spectrogram data—representing the Fourier data as power magnitudes

of a bank of 128 overlapping Mel-scaled filters by averaging over-

lapping sets of Fourier frequency bin magnitudes per filter. From an

audio classification perspective, this also decouples the data repre-

sentation from particular frequencies, which increases the chance of

matching similar sounds with their different particular frequencies.

MFCC diagrams, PCA, and heatmaps

From the Mel spectrogram, MFCC features were extracted to make

MFCC diagrams (Figs. 1A–D). In contrast to the hertz displayed on the

y-axis at the top figure, the Mel spectrograms show the activation of

frequency bins spaced according to the perceptually correlated

logarithmic Mel-frequency scale. Below the Mel spectrogram, the

MFCC plots, which are not human legible in the same way as spec-

trograms, represent the Mel spectrogram as a set of harmonically

related cosine waves that independently vary their amplitudes from

moment to moment.

We combined spectral features with MFCC features into a feature

vector and input those values into a two-component PCA.{ PCA

(Pearson, 1901) is a dimensionality-reduction method that

Table 1. Spectral Audio Feature Definitions

TERM DEFINITION

Root mean square

energy

Root mean square energy measures the magnitude of the

audio signal relative to a maximum magnitude. This feature

correlates roughly with perceived loudness.

Spectral centroid Spectral centroid behaves like a physical center of mass: it

describes the frequency around which the energy centers.

A higher frequency spectral centroid will be perceived as a

brighter sound.

Spectral bandwidth Spectral bandwidth functions like the standard deviation of

a distribution centered on the spectral centroid. A larger

spectral bandwidth will take up a relatively wider swath of

the audible frequency range.

Spectral roll off Spectral roll off describes the frequency below which 85%

of the sound’s frequency lies at that particular moment.

Spectral novelty Spectral novelty tracks the rate of change of each

frequency bin’s relative magnitude. These spectral features

are relative magnitudes, and they were normalized to zero

mean and unit variance after extraction.

*These derived audio signals should not be confused with the linguistic
notion of distinctive features represented in Hall (2001).

{Code used in this study is at: https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html
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Fig. 1. Log frequency spectrograms, Mel spectrograms and MFCC magnitudes of four natural environments. (A) Forest, (B) stream,
(C) mountain, and (D) ocean. The log-frequency spectrograms are arranged vertically (top), Mel spectrograms (middle) and MFCC index
(bottom). Three recordings for each environment are arranged horizontally. MFCC, Mel frequency cepstral coefficient.
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Fig. 1. (Continued).
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Fig. 1. (Continued).
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Fig. 1. (Continued).
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transforms data sets with a large number of variables into a smaller

variable while retaining most of the information found in the larger

set. It creates new uncorrelated variables that can successively

maximize variance ( Jolliffe and Cadima, 2016).

From the PCA, we generated feature significance heatmaps that

facilitated comparisons of relative feature significance across the 25

features extracted from each recording. The PCA also reduced each

audio frame’s 25 features to two components. We generated scree

plots to help visualize data dimensionality by illustrating each

principal components’ cumulative variance. For each environment,

the first two components explained a total of between approximately

one-third and three-fourths of the environment data’s total variance

(Fig. 2).

Results
The variety of spectral characteristics shown in Figure 1 indicates

that different soundscapes offer measurably different sonic compo-

nents. Darker colors (blues vs. reds in the case of MFCCs) indicate

lower magnitude values. Values in the red/pink range are closest to

noise, that is, the equal presence of all frequencies. MFCC feature

magnitudes, however, are not easily human legible and represent a

Mel spectrogram as a summation of cosine wave magnitudes.

PCA reveals the relative importance of 25 features between the

forest, mountain, stream, and ocean environments (Fig. 3). For PCA1,

all four environments can be characterized by changes in spectral

bandwidth and roll-off, less so for centroid and not by novelty. The

additional MFCC features give each environment a distinct feature

significance fingerprint. For the forest environment (Fig. 3A), MFCCs

3, 8, and 10 help distinguish it from the other environments. The

stream environment (Fig. 3B) is characterized by MFCCs 3, 5, 10, and

12, the mountain environment (Fig. 3C) mainly by lower MFCCs (3–5,

7, and 9), whereas the ocean environment (Fig. 3D) is distinguished

by low and high MFCCs (1–3, 8, 10, 11, 13, 16, and 18). PCA2 explains

much less of the variance (Fig. 2).

Discussion
The audio features analyzed in this study reveal new commonal-

ities and differences across natural sonic environments. These may

have been possible to hear, but would have gone unnoticed if only

traditional spectrogram methodology were used. For example, both

the stream and ocean environments were characterized by prominent

contributions from band-constrained unpitched noise, in the low-

and mid-high frequency registers. For the ocean, the root mean

square energy varied significantly. This feature explains much less

variance for the ocean, however, than for other environments, be-

cause the total amplitude change in time was much closer to noise for

ocean than it was for other environments. Fourier analysis represents

noisy signals poorly, because noise is defined as the equal presence of

all frequencies, and Fourier analysis represents signals as a sum of

single-frequency sinusoidal functions. Despite this limitation, spec-

tral features that average frequency energy can be helpful in char-

acterizing noisy signals. For example, spectral centroid should

strongly characterize signals that behave like various colored noises,

that is, white, brown, and pink noise.

Our findings complement those of Van Hedger et al. (2019) who

found that the conceptual identification of a sound as natural or

urban fundamentally alters the way in which listeners use acoustic

cues to arrive at their aesthetic judgment. Their findings reveal a

consistently large preference for identified nature sounds with a

mean aesthetic rating ranking over 3 SD higher than the mean aes-

thetic rating for urban sounds and support long held beliefs that

human affiliation with, and affection for, natural environments is

innate and part of our evolutionary history (Wilson, 1984). Similarly

our study explores multiple acoustic features (spectral centroid,

spectral roll-off, spectral bandwidth, root mean square, and novelty;

see Table 1) and also offers a means of exploring many more addi-

tional features in the form of MFCCs, thus allowing for a deeper

analysis of differences and similarities within natural sound that may

be of therapeutic relevance.

Although humans have become increasingly urban and physically

removed from the natural (nonhuman built) world, we simulta-

neously have greater access to the widest array of digitally delivered

nature sights and sounds in history. Libraries of natural sonic envi-

ronment recordings, such as the Center for Global Soundscapes

Project, are expanding with a steady stream of new recordings from

community scientist-driven apps such as Record the Earth. Adding

DSP representations, such as Mel scales and MFCCs that bridge

perceptual, physiological, and physical aspects of hearing, can help

pinpoint meaningful differences and similarities between these

myriad natural sound environments. With this knowledge, we can

better discover and compare feature sets that may correlate with

beneficial physiological and cognitive effects and work toward cre-

ating more inclusive and effective nature-based sound therapies.

Limitations and future directions

The aim of this preliminary study was to illustrate the utility of

this multidisciplinary analytic approach and provide a procedural

outline to help focus the search for therapeutic audio from natural

environments. It is limited in having only three recordings from

the four selected environments. To make accurate diagnostic
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Fig. 2. Scree plots of explained variance for additional analysis components. (A) Forest, (B) stream, (C) mountain, and (D) ocean
environments.
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Fig. 3. Two-component principal component analysis. Feature contribution heatmaps. (A) Forest, (B) stream, (C) mountain, and (D) ocean
environments. Feature magnitude (relative luminance) indicates a feature’s relative contribution (higher luminance greater contribution) to
a single analysis component. The components explain differing amounts of variance as illustrated in Figure 2. A grayscale representation
was selected over multicolors since grayscale makes relative distinctions easier to perceive versus using different colors, due to a
perception-intensity gap of differing adjacent hues (Rogowitz & Treinish, 1998).
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recommendations, many more recordings from each environment

are needed. Additional recordings could also allow for the calcula-

tions of bootstrap confidence intervals for the loadings to demon-

strate which features are most significant. For example, researchers

could conduct random samplings of 10,000 n-second long chunks of

audio, identify feature significances for each chunk, and then con-

struct confidence intervals, or legible Bayesian credibility intervals,

to illustrate whether a particular feature explained a chunk’s variance

more or less across the many samples of a selected sonic environ-

ment. A meta-heatmap of feature significance intervals could then be

created to showcase the higher per-chunk significances.

Further research avenues could include a greater diversity of

natural environments and sounds, and clip lengths as well as addi-

tional analyses. Emerging experimental DSP techniques such as in-

verse MFCCs and matching pursuit algorithms supplement MFCC

features and have been reported to yield higher machine recognition

accuracy for environmental sounds (Chu et al., 2009; Ramirez et al.,

2018). Other similarity metrics and applied statistics could also be

undertaken such as canonical correlation analysis (CCA)—a multi-

variate constrained ordination technique (McGarigal, Cushman, &

Stafford, 2000). Using CCA, the 25 extracted auditory features would

function as independent variables, whereas the four sonic environ-

ments would be dependent variables.

The cross-pollination of DSP with investigation into nature-

based sonic therapeutics and acoustic ecology can offer numerous

benefits. It can strengthen existing quantitative methods for com-

paring diverse natural environments (Paine, 2017) and make data

sets more machine readable, facilitating investigations of correlated

beneficial responses. Such methods can also be applied to im-

proving measurements and tracking myriad human-driven sonic

alterations to our natural (Pijanowski, 2016) and urban environ-

ments (Southworth, 1969).

As the percentage of humanity living in urban environments rises,

our detrimental impacts to the rich and diverse sounds of our natural

environments also continue to escalate. The body of experimental

evidence supporting the ability of nature sounds to beneficially in-

fluence our endocrine and autonomous nervous systems grows (Tho-

ma, Mewes, Nater, 2018, & Ratclliffe, 2021; Supplementary Table S1),

however, we are still in the early stages of deciphering how and which

sonic elements are most deeply involved in these complex processes. It

is hoped that the machine-friendly methods such as those detailed in

this study will help to streamline comparisons of diverse natural en-

vironments and ideally inform broader implementation measures.

The widespread potential for applying such benefits is encour-

aging and exciting, from health care to in-home design and urban

planning. Examples include reducing anxiety intraoperatively as

seen in Arai et al. (2008), speeding recovery from stressful events

(Annerstedt et al., 2013), creating restorative environments to offset

and reduce impacts of mechanical and human-created sounds

created during COVID quarantines and social distancing (Dzham-

bov et al., 2021), and promoting feelings of well-being and serenity

for harried travelers, for example, playing natural sounds (includ-

ing those from the Aurora Borealis) through 27 loudspeakers at the

Helsinki-Vantaa Airport in concert with nature imagery projected

onto a 4K wraparound screen (Campos, 2020). One can only hope

that the speed at which we can analyze, identify, and hone the

implementation of natural sonic environments for therapeutic

purposes can outpace the rate at which we are degrading these

valuable sonic assets.
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