
Indigenous Grapevines as a Novel Source of Bio-pesticides for Viticulture

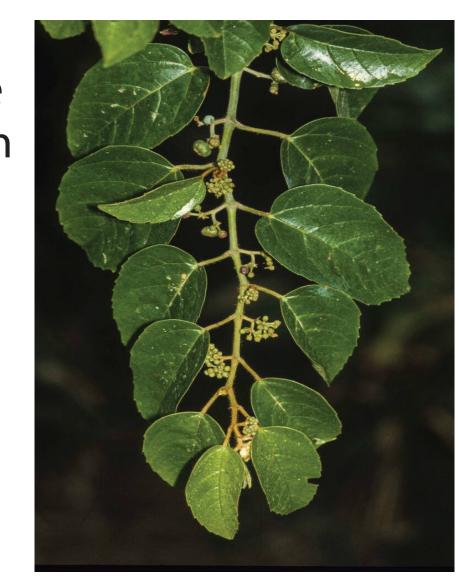
Erik Baker, Winnifred Duk, Saroj Dulal, Leanne Pearson, Brett Neilan, Ben Long

Methods

Collect Samples

Background

Commercial grapevines are highly susceptible to pathogen attack. These pathogens cause serious diseases that affect fruit quality, yield, and impact the wine-making process. There is a constant need for new and innovative pesticides that are, efficient, sustainable, and safe for human health.



Downy mildew caused by the oomycete Plasmopara viticola

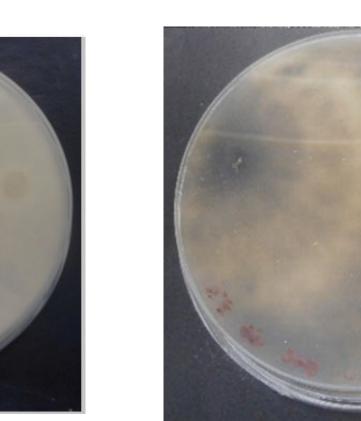
Fungal infection caused by *Botrytis* cinerea


Endophytes are microorganisms that form the internal microbiome of plants. They play a crucial role in a plant's defense against pathogen attack. One of their key protective strategies involves the production of compounds which have anti-pathogenic properties. The microbiomes of indigenous grapevines remain largely unexplored, and could potentially be a valuable source of new compounds with bio-pesticide potential.

Australian Indigenous grapevine Cissus antarctica

Results

Cissus hypoglauca



Inhibition of *B. cinerea* by the crude compound extracts

Extract D.N.A.

from plant tissue

Inhibition of *B. cinerea* by the root endophyte Streptomyces sp.

1. Characterise Microbiome 2. Assess Bioactivity and Analyse Compounds 3. Bioactivity Screening in planta

extraction

Metagenomics

Metabolomic

screening

of bioactive

bioassav

Detached leaf

assays

Vitis vinifera cv.

(Created in Biorender.com)

Inhibition of B. cinerea by endophytes Neofusicoccum sp. (left) and *llyonectria*. sp (right).

Microbiome metabarcoding of the leaves,

397 bacterial endophytes and 38 fungal

endophytes. Culture dependent analysis

The cultured endophyte with the highest

Neofusicoccum sp., the second highest was

Streptomyces sp., and the third *llyonectria* sp.

inhibition rate against *B. cinerea* was

produced 14 unique isolates.

roots, and stems of three Cissus sp. mapped

Conclusion

from root endophyte Streptomyces sp.

- Our research demonstrates that Australian indigenous grapevines harbor rich and highly diverse communities of fungal and bacterial endophytes.
- Several endophyte cultures displayed the ability to restrict the growth of the pathogenic fungus B. cinerea frequently found in viticulture.
- Indigenous grapevines likely serve as a valuable reservoir of biocontrol agents for viticulture.

Next Stage

- Metagenomic profiling of indigenous and commercial grapevines.
- Continue with the isolation of endophytes from native grapevines and the examination of their bioactivity.
- Identification of bioactive, endophyte-derived compounds.

Aims

- 1. Characterise the microbiome of indigenous and commercial grapevines through metagenomic sequencing.
- 2. Evaluate the bioactivity of native grapevine endophytes and their extracted compounds against grapevine pathogens and identify and analyse any bioactive compounds.
- 3. Test bioactive compounds in planta using Vitis vinifera cvs.

Presented by: **Erik Baker**

PhD Student in Biological Sciences School of Environment and Life Sciences University of Newcastle erik.baker@uon.edu.au

Supervisors: Ben Long, Leanne Pearson, and Brett Neilan

Acknowledgements

TAMBURLAINE

ORGANIC WINES

