
Shuyue Fan1, *, Keren A. Bindon2, and David W. Jeffery1

1 School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide 
2 The Australian Wine Research Institute

From wine additive classification to monitoring red wine maturation 
and ageing: Novel approaches based on spectrofluorometric 
fingerprints

INTRODUCTION & AIMS

MORE INFORMATION:
Shuyue Fan
Email: shuyue.fan@Adelaide.edu.au

A/Prof David Jeffery
Email: david.jeffery@adelaide.edu.au

ACKNOWLEDGEMENTS:

                                  
                 

Maturation

Phenolic profile1 change

Bottle ageing

Additive treated wine

Analysed by A-TEEM1

                         
                     

Chemometrics with
machine learning

Model establishment such as 
extreme gradient boosting (XGB)

MATERIALS & METHODOLOGY

RESULTS

CONCLUSION & PERSPECTIVE

REFERENCE:
Fan, S.; Bindon, K.A.; Gilmore, A.M.; Jeffery, D.W. (2025) Fluorescence Spectroscopy for Grape and Wine 
Compositional Analysis and Quality Control. Adv. Food Nutr. Res., In Press. doi:10.1016/bs.afnr.2025.01.004. 

Waterhouse, A. L., Sacks, G. L., & Jeffery, D. W. (2024) Additives and processing aids. In Understanding Wine 
Chemistry (pp. 436-443). https://doi.org/https://doi.org/10.1002/9781394258406.ch27

Various fluorescent substances occur in grape and wine, including phenolics, vitamins, and amino acids. The decisive role of phenolics in grape and wine quality, in combination with their fluorescent
properties highlight the natural fit of fluorescence spectroscopy in grape and wine science. Thus, as a rapid, sensitive, easily-implemented, environmentally friendly, and cost-effective instrumental
approach, fluorescence spectroscopy combined with chemometrics based on machine learning (ML) has shown advantages for quantification and prediction of phenolic substances, identification and
classification of varieties, vintages and geographical regions, and detection of adulterants. In addition to discerning relatively static features of wines, the short-term developmental change of wine features
can also be measured and tracked by spectrofluorometric fingerprint.1 Concerning other potential applications of the analytical approach, a wide range of exogenous additives can be used during the
winemaking process for various purposes, such as wine stabilisation and modification of sensory attributes. Types of additives include enzymes, antioxidants, clarifying or fining agents, tannins,
polysaccharides, oak wood products, and so on. The use and dosage of wine additives is generally governed by regulations in different countries and regions.2 However, the excessive use of legal additives,
abuse of illegal additives, and adulteration of wine (and wine-derived spirits such as brandy) still occurs. The exploration of the detection, classification, and tracing of various additives in wine is lacking.
Furthermore, methods could be improved for monitoring of long-term red wine evolution, especially, during maturation and ageing, which are crucial value-adding stages for red wine quality and sensory
attributes modification. Fluorescence spectroscopy can be a potential novel approach to address these research gaps.

Figure 1. Class CV predicted from XGB discriminant analysis (DA) classification using (a) EEM data alone and (b) 
fused A-TEEM data for the untreated Sauvignon Blanc (C) and wine treated with 27 different bentonites (B1-B27)
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In Figure 2, the evolution of EEM contour maps of two
Shiraz wines matured in tank and barrel are reasonably
apparent. This revealed that fluorescence spectroscopy
can discern and track subtle chemical changes of red
wines during a dynamic process. In Figure 3, XGB
regression was applied to the phenolics data to build
regression models. Table 1 shows high values for
coefficient of determination of cross-validation (R2 CV)

1. Data fusion can enhance the classification accuracy of the model established by the XGBDA.
2. The phenolics profile change of wines induced by maturation and additive treatments can be
discerned by the spectrofluorometric fingerprints.
3. Further data analysis and model optimisation will be implemented to enhance the capacity of A-
TEEM data to classify and predict wine features and phenolic profiles.
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Figure 1 shows a prediction accuracy of 90% for bentonite type from an ML model based on the
EEM data. Out of a total of 328 samples, 34 samples were incorrectly predicted. The prediction
accuracy from an ML model based on the fused absorbance and EEM data improved to 94%. Out
of a total of 328 samples, only 19 were incorrectly predicted as a different bentonite. This
illustrates the high sensitivity of A-TEEM to subtle compositional changes of wines caused by the
treatments, even though the additives in this case had very similar properties.

Figure 3. XGB regression of measured vs. CV predicted for (a) MP, (b) LPP, and (c) SPP, and tannins by (c) MCP and 
(e) BSA assays for 8 red wines collected from 3 sampling time points during maturation at Yalumba

Model R2 CV RMSECV

MP 0.922 0.024

LPP 0.974 0.049

SPP 0.938 0.034

MCP tannins 0.974 90.729

BSA tannins 0.995 10.026

Table 1 Evaluation of established models by XGBR 
based on EEM data and phenolics parameters

(a)

(d) (e)

(b) (c)

Classification

Monitoring & Prediction

Tim Reilly (AWRI), Alex Schulkin (AWRI) 
Alexey Alon Doumbouya 
(Hill-Smith Family Estates-Yalumba winery) 
Adam Gilmore (Horiba)

The study aims to explore the capacity of
fluorescence spectroscopy combined with
machine learning for
1. Discrimination of wines treated with

different additives;
2. Monitoring of red wine evolution during

maturation and ageing to predict
optimum duration;

3. Establishing relationships between
spectrofluorometric fingerprints and
phenolics profiles of red wine during
maturation and ageing.

and low root mean square error of cross-validation (RMSECV). These results highlight that
fluorescence spectroscopy can be a powerful tool for prediction of phenolics parameters in red wine.

Figure 2. EEM contour maps of separate Shiraz wines collected from Yalumba during maturation showing (a) 1st, 
(b) 2nd and (c) 3rd sampling time points in stainless tank and (d) 1st, (e) 2nd and (f) 3rd time points in oak barrel.
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