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1 Introduction

Governments around the world are faced with the choice of investing in clean or dirty energy.

The most recent United Nations Climate Change Conference (COP26) brought to light

the complicated and often controversial nature of these decisions (Cursino and Falkner,

2021; de la Garza, 2021; McGrath, 2021). It is clear that leaders perceive an inherent

conflict between the reduction of dirty energy production and the promotion of other national

interests (Geall, 2021; Hawkins, 2021; Rowlatt and Gerken, 2021).

This paper seeks to shed light on the tradeoff between clean and dirty energy by estimat-

ing the health costs of fossil fuel based energy production. This is a difficult task because the

choice of fuel and the amount of power generated in a given region is typically endogenous,

determined by a host of factors (including the preferences of the local population) which

are also correlated with drivers of population health. Previous work has dealt with this

endogeneity problem by exploiting exogenous shocks to power generation, including power

plant closures, expansions, and worker strikes (Beach and Hanlon, 2018; Clay et al., 2021;

Lavaine and Neidell, 2017; Luechinger, 2014; Ransom and Pope, 1995; Severnini, 2017; Yang

and Chou, 2018). In this paper, we take advantage of a unique Colombian electricity pric-

ing policy, in which an increase in thermal generation is triggered whenever the wholesale

electricity price exceeds a pre-determined scarcity price. Our goal is to estimate how this

ramp-up of thermal generation affects population health.

Though closely related to the large body of work documenting the negative effects of

pollution on various health outcomes (e.g., Chay and Greenstone (2003), Currie and Neidell

(2005), Jayachandran (2009), Currie et al. (2014), and the studies cited in the previous

paragraph), the research question of this study is distinct. Unlike these papers, which

typically aim to recover the causal effect of a change in pollution levels, we are interested

in the reduced form effect of fossil fuel based energy generation on health, which we argue

is the policy relevant question of interest. A policymaker typically will have various policy

levers that can be used to switch from dirty to clean energy but will have less control over
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the amount of pollution actually emitted and, importantly, the exposure of the population

to this pollution increase. Differences in the behavioral responses of individuals and the

spatial distribution of a population will lead to different changes in pollution exposure in

response to the same increase in pollutant emissions. From a government’s perspective,

therefore, the key question of interest is how health is affected by a policy that changes the

generation fuel mix.1 The possibility of mitigation and avoidance behavior, which may vary

by socioeconomic status or other (unobservable) population characteristics, means that the

policy parameter of interest is not easily recovered from estimates of the pollution effects of

electricity generation and the health effects of pollution emissions.

Another important contribution of this study is its focus on Colombia: the vast majority

of papers that exploit exogenous shocks to power generation has focused on the United

States (Beach and Hanlon, 2018; Clay et al., 2021; Ransom and Pope, 1995; Severnini,

2017; Yang and Chou, 2018) or other high-income countries (Lavaine and Neidell, 2017;

Luechinger, 2014). Recently, evidence from lower income countries has begun to emerge,

focusing primarily on coal plants in India (Barrows et al., 2021; Datt et al., 2021; Gupta and

Spears, 2017). Evidence from outside this setting is still very limited (Cesur et al., 2017;

Ordoñez, 2020).

Estimates from lower income countries are important because the majority of the pre-

dicted increase in energy consumption is expected to come from non-OECD countries (US

EIA, 2021), whose energy source choices will therefore be globally important. It is unclear

how generalizable the evidence from rich countries will be. We might expect the health

effects of fossil fuels in lower-income countries to be larger due to higher pollution levels

(and potential non-linearity in the effects of pollution), lower health levels, and lower qual-

ity healthcare systems. On the other hand, fossil fuel generation may have less of an impact
1This is a key distinction between this study and Ordoñez (2020), which aims to estimate the effect of

PM 10 on health outcomes in the same setting. Also relying on the fact that thermal generation ramps
up when hydropower is expensive, Ordoñez (2020) uses national river flows interacted with thermal power
capacity as instruments for pollution levels. Because we are interested in identifying the effect of a policy
lever, and for additional reasons described in section 4.2, we choose to adopt a reduced form rather than an
instrumental variables approach.
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on health due to competing risks: there are other (potentially more important) drivers of

mortality in lower income countries.

As mentioned above, we take advantage of an electricity pricing policy in Colombia, where

the majority of electricity is generated by hydroelectric plants. On days when the wholesale

electricity price exceeds a pre-determined level, thermal generation (which includes coal,

natural gas, diesel, and other liquid fuels) ramps up. This typically happens because of very

low rainfall restricting the supply of hydroelectricity.

Using daily data on electricity prices and generation, we are able identify “scarcity days”

as days when the wholesale price exceeds the scarcity price. Simply comparing health out-

comes on scarcity and non-scarcity days would be unlikely to provide unbiased estimates

of the health effects of thermal generation for two reasons. First, high wholesale prices are

driven by demand and supply factors. If a scarcity day is triggered due to high demand for

electricity, it would be difficult to separate the effects of increased thermal generation from

the effects of the factors that drive electricity demand. A similar argument could be made

for supply-side factors (in this case, primarily low rainfall), though we control flexibly for

rainfall in our regressions. Second, the health data we use exhibits large day-to-day fluctu-

ations in the extent of under-reporting, with particularly high under-reporting during the

scarcity period (due to factors completely unrelated to electricity generation, as we discuss

later). For these reasons, we make use of cross-sectional variation in addition to the scarcity

day comparison to ensure that we are isolating the effect of the higher thermal generation

that occurs on scarcity days.

Specifically, we characterize municipalities based on the average capacity of thermal

power plants in their vicinity and categorize them into “high capacity” and “low capacity”

municipalities by splitting at the median. Thermal plants with greater capacity are able

to generate more electricity and therefore more pollution. This implies that municipalities

near high capacity plants should be exposed to greater increases in pollution on a scarcity

day, a hypothesis we are able to confirm empirically. That is, we regress various pollutant
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measurements on location fixed effects, time fixed effects, weather controls, and our main

variable of interest: an interaction between a high capacity and scarcity day indicator. We

document significantly larger increases in PM 2.5, PM 10, SO2, and CO on scarcity days in

high capacity compared to low capacity municipalities. Estimates of the interaction term

correspond to a 36% increase relative to mean PM 2.5, 16% for PM 10, and 25% for SO2.

Having documented that the interaction between high capacity and scarcity is a signifi-

cant driver of pollution levels, we then use the same specification to estimate the effects of

increased thermal generation on health outcomes. Existing work on the effect of power gen-

eration on health has almost exclusively focused on infant mortality and infant health as the

outcomes of interest, but we are able to study a rich set of health outcomes. We have access

to daily morbidity counts (specifically, the number of people who visited a health facility)

by diagnosis code, as well as daily emergency room (ER) mortality counts by diagnosis code.

We have data on all ages and can examine our outcomes (respiratory and cardiovascular

morbidity and mortality) separately for infants, children, adults, and the elderly.

We find that respiratory morbidity increases significantly more for high capacity com-

pared to low capacity municipalities on scarcity days; the magnitude of the interaction

coefficient is 10% relative to the mean. This increase is accompanied by an increase in

respiratory costs equal to 10% of the mean. Although we find no statistically significant

effects on cardiovascular morbidity, the effect on cardiovascular costs is significant at the

10% level and equal to 6% of the mean. We also find statistically significant and large effects

on cardiovascular ER mortality, equivalent to 54% of the mean. These mortality effects are

driven by the elderly. In terms of healthcare costs and lost lives, the total cost of the scarcity

period in our study was 415 million dollars (in 2015 USD).
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2 Background

Colombia relies primarily on hydroelectric power, which generated over 70% of the country’s

electricity from 2000-2015 (McRae and Wolak, 2016). Almost all of the remaining electricity

is generated by thermal power plants, which in Colombia’s case include coal, natural gas,

diesel, and other liquid fuels (see Appendix Figure A1 for the composition of generation by

technology for our sample period).

Colombia’s dependence on hydropower can be problematic during times of low rainfall,

as evidenced by the year of electricity rationing brought on by the El Niño event of 1992

(McRae and Wolak, 2019). Reforms that were largely motivated by this event eventually

led to the development of the unique market structure and policy framework that provide

us with the source of exogenous variation in fuel choice that we use to estimate the health

costs of thermal energy.

Colombia’s electricity market consists of a wholesale market (where wholesale electricity

prices are determined daily), a retail market (where end users pay regulated prices for the

electricity they consume), and a capacity market (where capacity payments made to gen-

erators are determined by auctions every few years). These capacity payments are paid to

power plants even when they are not generating electricity. Generators that receive these

payments are “obligated” to increase their generation whenever the wholesale market price

exceeds a regulated “scarcity price.” Specifically, whenever this happens, these generators

must pay the difference between the wholesale price and the scarcity price, multiplied by

their assigned generation capacity. This provides a financial incentive for generators to pro-

duce at least up to their assigned capacity, as they will end up charging the wholesale price,

paying the difference between the scarcity price, and receiving the scarcity price (McRae and

Wolak, 2019).

Panel A of Figure 1 plots the daily wholesale market price (solid blue line) and scarcity

price (dashed black line) during our study period, 2011 to 2017. The gray shaded regions

mark days on which the wholesale price exceeded the scarcity price, which we refer to as
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“scarcity days.” The primary scarcity period during these years took place between 2015

and 2016, caused by another El Niño event.

Panel B of Figure 1 (along with Figure A1) confirms that thermal plants do indeed in-

crease generation during scarcity days. The red dashed line, which represents total thermal

electricity generation, jumps up during the scarcity period shaded in gray (when the dif-

ference between the wholesale and scarcity price exceeds zero). Figure A1 shows that this

increase is driven by several types of dirty energy (diesel, coal, and other liquid fuels), as

well as natural gas, which is cleaner.

In this paper, we investigate what happens to pollution levels and, subsequently, health

outcomes during these scarcity periods. Importantly, the increase in thermal generation that

takes place on scarcity days is triggered by a pricing rule, rather than endogenous factors

like institutional quality, economic or political conditions, or technological improvements

that typically drive fuel choice decisions across countries and regions over time.

Motivated by the large body of work documenting links between air pollution and mea-

sures of respiratory and cardiovascular health specifically (Brunekreef and Holgate, 2002),

we focus on these two disease categories in our analysis. Different pollutants affect health

through different channels, but negative effects on respiratory health are generally driven

by causing oxidative stress, inflammatory responses, and adverse changes in lung function

(Kurt et al., 2016). Oxidative stress and inflammatory responses can also negatively affect

the cardiovascular system, and some pollutants (PM 2.5) are fine enough to cross into the

bloodstream, directly affecting the cardiovascular system (Brook et al., 2004, 2010).

3 Data

Drawing from several data sources, we construct a municipality-day-level panel spanning the

years 2011 to 2017. We first restrict to municipalities that are close enough to a thermal

power plant to be affected by changes in generation. Using public information on power
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plant locations, we identify and restrict our main sample to municipalities located within

100 kilometers of a thermal power plant, which are represented by the shaded regions in

Appendix Figure A2.2 A 100 kilometer cutoff balances representativeness with the need to

focus on municipalities that are close enough to be affected by a power plant. The resulting

sample includes more than 70% of Colombia’s population (567 municipalities). We also show

robustness to a 120 kilometer cutoff, which includes 83% of the population.

3.1 Health Outcomes

We obtain morbidity and mortality measures from the Integrated Information System for So-

cial Protection (SISPRO), which contains the Individual Register of Health Services (RIPS).

The RIPS collects detailed information about medical consultations, ER visits, hospitaliza-

tions, and medical procedures that take place in any Colombian health service institution.

This allows us to calculate, for each municipality-day, the number of patients and total costs,

broken down by the ICD-10 diagnosis code assigned to the visit.3 We use these ICD-10 codes

to identify respiratory (J00-J99) and cardiovascular (I00-I99) conditions.

Although the RIPS data only captures illness among people who visit a health facility,

we argue it is still a useful measure of population morbidity. Due to high insurance rates in

Colombia, this measure captures a large share of people who are sick. According to Camacho

and Mejía (2017), 70% of Demographic and Health Survey respondents who needed health

treatments actually visited a health facility. Increases in our morbidity measures will be

driven by increases in the number of people who are sick at all, as well as the share of people

whose illness is severe enough for them to seek out formal healthcare.

Another feature to note about the RIPS is that there is likely to be substantial under-

reporting. As Appendix Figure A3 shows, there are large month-to-month fluctuations in
2Because Colombia is divided by two large mountain ranges, a municipality that is physically close to

a power plant may be very unlikely to be affected by it if it is on the opposite side of a mountain range.
Therefore, when implementing the 100 kilometer cutoff, as with all cutoffs used in the remainder of the
paper, we exclude any areas that are not in the same natural region (of which Colombia has six) as the point
of interest.

3We are also able to further disaggregate by age, which we use in parts of our analysis.
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the number of health facilities that report to the RIPS. These fluctuations are unlikely to

be solely driven by fluctuations in the number of health facilities that receive any patients

and likely represent some measurement error. Of particular concern is the sharp drop that

occurs at the end of 2015, which is during the main scarcity period in our study. This

drop coincides with (and was likely caused by) the liquidation of one of the public health

insurance providers, which generated substantial chaos in the healthcare system (Barbosa

and Monsalve S., 2017; Ministerio de Salud y Protección Social, 2015). This data issue is

one reason why our empirical strategy relies on both cross-sectional and time variation, not

just on a comparison between scarcity and normal days.

In column 1 of Table 1, we report daily morbidity for these disease categories, measured

as daily patient counts per 100,000 municipality residents. Cardiovascular morbidity is

slightly higher (at 33 patients per 100,000) than respiratory morbidity (at 23 patients per

100,000). Corresponding costs are also higher for cardiovascular morbidity. For ER visits

only, the RIPS data also records deaths. On average, there are 0.03 respiratory and 0.01

cardiovascular ER deaths per day per 100,000 municipality residents. The number of health

facilities reporting to the RIPS in each municipality (by month) is included as a control

variable in our later analysis.

3.2 Electricity Generation

Our information about thermal power plants and electricity prices comes from the Colombian

market operator XM. As mentioned above, we have daily spot prices and scarcity prices,

which allow us to identify a scarcity day as any day when the spot price exceeds the scarcity

price. Scarcity days account for 8% of the sample period.

We also use this data to split municipalities into two groups based on the capacity, or

maximum generation potential, of their nearby power plants. Specifically, we calculate the

inverse-distance weighted average capacity of power plants within 100 kilometers of each

municipality, and split the sample at the median. 50.4% of municipalities are considered

9



high capacity according to this definition.

Because our empirical strategy will rely on comparing trends across high and low capacity

municipalities, we also report summary statistics for high and low capacity municipalities

separately (colored black and gray in Appendix Figure A2, respectively). Restricting to

years prior to 2015 (i.e., before the first major scarcity event took place), columns 2 and 3

report statistics for high and low capacity plants respectively, while column 4 reports the

differences between the two groups. Morbidity, cost, and mortality outcomes are similar

across the two groups.

To calculate daily thermal power generation for each municipality, we compute a weighted

average of the electricity generated by all plants within 100 kilometers, weighting each value

by the inverse of the distance between that thermal plant and the municipality. As expected,

average electricity generation is significantly higher in high capacity municipalities (more

than double the generation of low capacity municipalities).

3.3 Municipality Characteristics

We also obtain other municipality-level characteristics from the National Administrative

Department of Statistics (DANE), which we report at the bottom of Table 1. Population

size, age composition, and municipality GDP are similar across high and low capacity areas.

Educational attainment is slightly higher for high capacity municipalities and this difference

is statistically significant at the 10% level, though small in magnitude (amounting to about

2% of the mean).

3.4 Pollution and Weather

We use information on pollution levels from Colombia’s Air Quality Information Subsystem

(SISAIRE). This information contain measures of PM 2.5, PM 10, SO2, CO, NO2, and O3

by hour from 127 measurement stations. We report summary statistics for these pollution

measures (at the station-day-level, for the entire 2011-2017 period) in Appendix Table A1.
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We also obtain weather information from Colombia’s Institute of Hydrology, Meteorology

and Environmental Studies (IDEAM). This information contains daily measures of wind

speed, rainfall, and temperature from 303 measurement stations, which we summarize in

Table A1. This table reports summary statistics for the station-day-level data, but in the

main regressions we assign weather variables to either pollution stations or municipalities

(depending on the analysis) using inverse-distance weighting within a 100 kilometer radius.

4 Empirical Strategy

Our goal is to measure the effects of thermal generation on municipality-level health. To

do this, we use scarcity days – days on which the scarcity price exceeds the wholesale price

– as a source of quasi-experimental variation. Scarcity days trigger increased electricity

generation at thermal power plants (which in Colombia include dirty energy sources as well

as natural gas). In this section, we first examine the relationship between scarcity days

and pollution, across high and low capacity areas, and use these findings to motivate our

empirical specification. We then describe the regression specifications for our main analysis,

in which we estimate the effects of thermal generation on various health outcomes.

4.1 Pollution and Scarcity Days

We begin by investigating how switching to thermal generation affects pollution levels, using

scarcity days a source of exogenous variation. Though scarcity days are defined by a rule-

based trigger, simply comparing pollution levels on scarcity and non-scarcity days would

likely fail to identify the causal effect of switching to thermal generation. Scarcity days tend

to occur when rainfall is very low, for example, and controlling for precipitation could be

an incomplete solution depending on the nature of the non-linearities in the relationship be-

tween pollution and weather. Scarcity days are also more likely to occur when the demand

for electricity is high, which could be correlated with our outcomes of interest. In general,
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comparing scarcity to non-scarcity days would not allow us to control for any day-specific

effects, which could be important if scarcity days coincide with other events that are corre-

lated with pollution levels (or, for our later analysis, the quality of our health outcome data

– for reasons described in section 3.1).

We therefore leverage variation across space as well as over time. We exploit the fact

that power plants with higher capacity will increase their electricity generation more on a

scarcity day, compared to power plants with lower capacity. Scarcity days should therefore

result in larger increases in pollution in areas near a high capacity plant. To test this, we

estimate the following specification:

Pst = δ1High Capacitys × Scarcityt + δ2Xst + ηs + γt + ϵst. (1)

Pst represents average pollution (either PM 2.5, PM 10, SO2, CO, NO2, or O3) at measure-

ment station s on day t and Scarcityt is a scarcity day dummy variable. High Capacitys is an

indicator equal to 1 if the average capacity of power plants within 120 kilometers of station s

is above the median. The vector Xst includes state-by-year fixed effects and cubic functions

of rainfall, temperature, and wind speed (generated as an inverse-distance weighted average

of all weather stations within 120 kilometers of pollution station s).

We are interested in δ1, the coefficient on the interaction between the high capacity

and scarcity day indicator. This captures the differential effect of a scarcity day in a high

capacity compared to a low capacity area, which we interpret as the causal effect of switching

to thermal generation. Because ηs controls for any location-specific unobservables and γt

controls for any day-specific effects, the identifying assumption is that the difference in

pollution levels between high and low capacity areas would have remained the same on

scarcity days if thermal power plant generation had not been triggered.

Table 2 reports the regression results from equation (1), using PM 2.5, PM 10, SO2, CO,

NO2, and O3 as dependent variables. The interaction term is positive and significant for PM
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2.5, PM 10, and SO2. That is, the increase in pollution that takes place on a scarcity day

is significantly higher for high capacity areas. The estimates correspond to a 36% increase

relative to mean PM 2.5, 16% increase relative to mean PM 10, and 25% increase relative

to mean SO2.

The interaction term (High Capacitys × Scarcityt) is a significant driver of changes in

pollution that are large in magnitude. As we discuss in the next sub-section, we use this

variable as the independent variable of interest in our main analysis.

4.2 Estimating the Effects of Thermal Generation

We use the specification below to estimate the reduced-form effects of dirty energy on

municipality-level morbidity, health costs, and mortality. Because the scarcity-by-high-

capacity interaction drives changes in more than one type of pollutant, we use a reduced

form approach instead of an instrumental variables strategy (where we would essentially

have only one instrument for multiple endogenous variables). A reduced form approach is

also preferred because there are only 127 pollution monitor locations, not evenly distributed

across the 567 municipalities in our sample.

For municipality j on date t, we estimate

Yjt = β1High Capacityj × Scarcityt + β2Xjt + ηj + γt + ϵjt, (2)

where Yjt represents either morbidity rates, costs, or mortality rates (respiratory and cardio-

vascular). The vector Xjt includes state-by-year fixed effects, the number of health facilities

reporting to the RIPS in municipality j in the month of time t, and cubic functions of rain-

fall, temperature, and wind speed (generated as an inverse-distance weighted average of all

weather stations within 100 kilometers of municipality j).

The main coefficient of interest is β1, which we interpret as the effect of thermal electricity

generation on Yjt. Again, because of the inclusion of municipality (ηj) and day fixed effects
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(γt), identification comes from any differential changes in outcomes on scarcity days, across

high and low capacity municipalities. Table 1 showed that high capacity and low capacity

municipalities were similar in terms of health outcomes, demographics, and socioeconomic

status (in the years prior to the first scarcity period in our sample). This provides support

for our identifying assumption: that the gap in health outcomes across high and low capacity

municipalities would have remained constant on scarcity days if thermal electricity generation

had not been ramped up.4

5 Results

We begin by examining the effects of thermal electricity generation on morbidity, measured

by the number of patients (per 100,000 municipality residents) categorized under a partic-

ular disease category. In column 1 of Table 3, there is a positive and significant coefficient

on the interaction between scarcity day and high capacity. Switching to thermal generation

increases the number of respiratory disease patients by 10% – approximately 2 additional pa-

tients per 100,000 residents. Column 2 reveals a large, positive but statistically insignificant

coefficient for cardiovascular morbidity.

What is the increase in costs associated with this increase in morbidity? Costs from

respiratory disease increase by approximately 0.9 pesos per person (10% of the average cost)

as a result of switching to thermal power generation (column 3 of Table 3). Interestingly,

although the effect on cardiovascular morbidity is insignificant, the effect on cardiovascular

costs is significant at the 10% level and equivalent to 6% of the mean (column 4).

In addition to morbidity and costs, we also investigate whether thermal generation in-

creases mortality. The RIPS data only records mortality for ER visits, which we use to

calculate the number of respiratory and cardiovascular ER deaths (per 100,000 people in a
4Note that this is assumption would be less likely to hold if we used distance from thermal plant as

our source of cross-sectional variation. Municipalities that are more than 100km from a thermal plant are
significantly different in terms of morbidity, mortality, and socioeconomic status, and could have responded
differently to the events coinciding with the 2015 scarcity period (described in section 3.1), which is why we
do not use them as a control group in our analysis.
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municipality). Column 5 of Table 3 shows that thermal generation increases cardiovascular

ER mortality by 54% (0.007 deaths per 100,000 residents). There is no significant effect on

respiratory mortality (column 6).

Table 4 explores heterogeneity by age. We define the following age categories: infants

(under 1) children (between 1 and 14), youth and adults (between 15 and 64), and the elderly

(65 or older). We calculate our morbidity and mortality outcomes for each age category and

repeat our main regressions for each of these age groups.

Column 1 of Table 4 shows that those aged 15 and older are driving the effects on

respiratory morbidity, with the coefficients for these groups representing about a 9-10%

increase relative to the mean. Effects on respiratory costs exhibit a similar age pattern. On

the other hand, in column 4, the cardiovascular mortality effects are driven by the elderly,

with an effect size of 86% relative to the mean.

We explore how these effects vary by municipality-level socioeconomic status in Table

A3. To proxy for socioeconomic status, we calculate the average education level for each

municipality using data from 2011. We repeat our analysis separately for municipalities with

average education below and above the municipality-level median. Coefficient estimates are

larger for the low education group in the respiratory morbidity and cardiovascular mortality

regressions, while the opposite is true for both respiratory and cardiovascular costs. The

differences between the groups are not statistically significant.

5.1 Robustness Checks

We conduct a falsification test, using morbidity, costs, and mortality from external causes

(ICD-10 codes V00-Y99, which include accidents) as our outcomes of interest. If our results

above were driven by changes in health-seeking behavior as opposed to changes in health

levels, we would expect to see a significant coefficient on our interaction term of interest in

these regressions. Appendix Table A2 reveals no significant effects of the scarcity by high

capacity interaction, suggesting this is not the case.
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We also examine whether there are any significant changes in the gap between high and

low capacity municipalities during the week before and after a scarcity period. Table A4

repeats our original regression and adds two additional interaction terms: high capacity in-

teracted with an indicator for the week before a scarcity period, and high capacity interacted

with an indicator for the week after a scarcity period. The former should yield statistically

insignificant coefficients if it is indeed the pollution generated on scarcity days that is driving

our effects. The latter will reveal any persistent effects of the pollution increases on scarcity

days.

Across all columns of Table A4, the interactions with the week-before indicator are all

small and statistically insignificant, providing further support for the validity of our empirical

strategy. The coefficients on the week-after interaction term are all larger in magnitude. In

the regression on cardiovascular mortality, it is statistically significant and even larger in

magnitude than the scarcity day interaction term (column 6). The pollution increases on

scarcity days appear to continue to affect cardiovascular mortality even after the scarcity

period is over, perhaps indicating that it takes some time (and perhaps continued exposure)

for the health effects of increased pollution to translate into higher mortality.

We also run event study regressions, summarized in Figure A4, yielding similar con-

clusions. Here, we include interactions between indicators for every quarter and the high

capacity interaction (leaving the quarter just before the main scarcity period as our omit-

ted category). We report the results for all outcomes for which significant coefficients were

reported in Table 3. Red dots represent quarters in which a scarcity day took place, while

blue crosses represent all other months.

For respiratory morbidity (in panel A), the blue coefficients display a relatively flat pat-

tern prior to the first scarcity day; the majority of coefficients are small and statistically

insignificant. On the other hand, coefficients are positive and statistically significant through-

out most of the 2015-2016 scarcity period. Interestingly, coefficients remain positive (and in

most cases statistically significant) until the end of 2016, suggesting some persistence in the
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effects of the pollution increases during the scarcity period. The results for respiratory costs

(panel B) and cardiovascular costs (panel C) show similar patterns: positive and significant

coefficients during the scarcity periods (marked by red dots).

The results for cardiovascular mortality are less precisely estimated. Like in the other

panels, the blue coefficients reveal no pre-trends. The first red scarcity dot (in quarter 2 of

2015) is higher than the previous period, though it is not statistically significant. Similarly,

two of the three quarters of the longer scarcity period are positive (but insignificant). The

last coefficient the largest in the whole series.5 This suggests that while the morbidity effects

of pollution may be immediate, prolonged exposure may have been what caused the increases

in mortality.

Finally, we demonstrate the robustness of our results to a 120 kilometer cutoff (Tables A5

and A6), as well as various sets of additional controls (Table A7). In panel A of Table A7, we

allow for weather variables to have different effects in high and low capacity municipalities to

ensure our coefficient estimates are not being driven by differential responses to the El Niño

event responsible the scarcity period in our study. In panel B, we allow for different seasonal

trends for high and low capacity municipalities (by controlling for group-specific month fixed

effects). In panel C, we allow for different quadratic trends for high capacity and low capacity

municipalities. None of these additional controls substantially alter coefficient estimates.

5.2 Total Costs

Taking into account the increased healthcare costs and lost lives, what was the total cost of

this policy? To answer this question, we need to calculate the increase in costs and mortality

on a scarcity day for high capacity and low capacity municipalities separately. However, due

to the inclusion of day fixed effects, our main specification only produces an estimate of the

difference in the scarcity day effect between high and low capacity municipalities.

We therefore repeat our first stage regression (with pollution as the dependent variable)
5Note that this month includes non-scarcity days at the end of the quarter.
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without date fixed effects, replacing them instead with month and year fixed effects. Al-

though we argue that date fixed effects are important for our health outcome regressions (due

to the fluctuations in the RIPS reporting discussed above), the results of Table A8 show that

our estimates of the interaction term are similar with or without date fixed effects. We there-

fore use the estimates from the more parsimonious specification (in odd-numbered columns)

to calculate the ratio of the low capacity scarcity day effect (coefficient on the scarcity day

main effect) to the high capacity scarcity day effect (sum of the scarcity day main effect and

interaction term) for PM2.5, PM10, and SO2 (the three pollutants found to be significantly

affected).6 We then take the average of these ratios, which is 0.22.

A ratio of 0.22 means the scarcity day effect in high municipalities is equal to 1.28 times

the interaction term, while the effect in low capacity municipalities is equal to 0.28 times the

interaction term. Assuming that the health effects can be scaled in a similar way, we can

use these numbers to calculate the effect of a scarcity day on health in high and low capacity

municipalities separately.

Using this information, along with the respiratory cost regression interaction coefficient of

0.93 and an exchange rate of 2745 pesos per 2015 USD, we estimate a total of 2.3 million USD

in increased respiratory costs across all municipalities in our sample during the 221 scarcity

days in our study period.7 With an interaction term coefficient of 0.92, cardiovascular costs

are almost identical.

To calculate mortality costs, we use the cardiovascular mortality coefficient (0.0073) and

the value of a statistical life calculated specifically for Colombia by Viscusi and Masterman

(2017): 1.228 million 2015 USD. This yields an estimate of 410 million USD, much larger

than the total costs stemming from increased healthcare utilization.
6To avoid negative ratios, we assign – conservatively – a scarcity main effect coefficient of 0.01 to SO2.
7Average municipality population is 48830. There are 286 and 281 high and low capacity municipalities,

respectively.
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6 Conclusion

This paper takes advantage of a unique electricity policy in Colombia to obtain causal

estimates of the health costs of switching to thermal energy generation. Comparing munic-

ipalities near high capacity plants to those near low capacity plants, on days when a price

trigger substantially increases thermal generation, we find that PM 2.5, PM 10, and SO2

levels increase significantly more in high capacity municipalities.

Using this same regression specification, we estimate the effects of increased thermal

generation on morbidity and mortality outcomes. Thermal generation increases respiratory

morbidity (primarily for those older than 15) and cardiovascular mortality (primarily for the

elderly). We calculate that the the entire scarcity period led to 415 million USD worth of

healthcare costs and lost lives.
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Figures and Tables

Figure 1: Prices and Generation

A. Daily Prices

B. Prices and Generation

Notes: Gray shaded areas denote scarcity days. Generation is the total electricity generated across all
thermal power plants.
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Table 1: Summary Statistics

All Years Pre-2015
All High Capacity Low Capacity Difference
(1) (2) (3) (4)

Daily morbidity (per 100,000)
Respiratory 22.795 22.682 23.624 -0.942

(34.578) (32.968) (36.511) (1.337)
Cardiovascular 33.353 31.899 30.348 1.552

(44.735) (44.236) (42.163) (1.582)

Daily Healthcare cost (per 100,000)
Respiratory 9.287 9.137 9.587 -0.450

(14.239) (14.209) (14.600) (0.601)
Cardiovascular 15.635 15.466 14.447 1.018

(26.058) (26.193) (24.989) (0.957)

Daily ER mortality (per 100,000)
Respiratory 0.033 0.026 0.037 -0.0109

(0.546) (0.368) (0.475) (0.0190)
Cardiovascular 0.014 0.010 0.012 -0.00145

(0.446) (0.333) (0.413) (0.00218)

Number of Health Facilities 110.508 107.279 105.089 2.189
(275.746) (317.184) (184.911) (21.38)

Generation and Weather
Scarcity Day 0.083

(0.276)
High Capacity 0.504

(0.499)
Electricity Generation (Gwh) 3.390 4.250 2.047 2.202***

(2.398) (2.741) (1.322) (0.112)

Municipality Characteristics
Population 48,830 57,975 37,859 20,117

(350,882) (460,453) (151,198) (28,704)
Share Children (0-14) 0.286 0.293 0.290 0.003

(0.038) (0.037) (0.038) (0.003)
Share Prime-age Adults (15-64) 0.625 0.621 0.624 -0.003

(0.032) (0.031) (0.033) (0.003)
Share Elderly (65 or more) 0.088 0.086 0.087 -0.001

(0.031) (0.031) (0.030) (0.003)
GDP 642.823 837.024 445.856 391.2

(5962.188) (8226.564) (1698.453) (498.2)
Educational Attainment 7.298 7.219 7.379 -0.160*

(1.101) (1.051) (1.144) (0.0925)

Observations 1,449,819 417,846 410,541 828,387

Notes: Sample spans the years 2011-2017 and restricts to municipalities located within 100 kilometers of a
thermal power plant. Unit of observation is a municipality-day.
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Table 2: The Impact of Thermal Generation on Pollution Levels

(1) (2) (3) (4) (5) (6)
PM2.5 PM10 SO2 CO NO2 O3

Scarcity Day x High 7.22*** 6.99** 2.42** 75.7 0.36 -1.63
Capacity (1.37) (3.22) (1.00) (61.3) (1.96) (1.81)
Observations 26635 65129 30905 27950 25326 48810
Mean of DV 20.1 43.7 9.87 966.1 27.1 24.3

Notes: Standard errors (clustered at station level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01. All
regressions control for station fixed effects, date fixed effects, state-by-year fixed effects, and cubic functions
of temperature, precipitation, and wind speed. Sample restricted to stations within 100 kilometers of a
thermal power plant.

Table 3: The Impact of Thermal Generation on Morbidity, Costs, and Mortality

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

Scarcity Day x High 2.24** 0.55 0.93*** 0.92* 0.0090 0.0073*
Capacity (0.92) (1.17) (0.32) (0.53) (0.012) (0.0039)
Observations 1449819 1449819 1449819 1449819 1449819 1449819
Dep. Var. Mean 22.79 33.35 9.287 15.64 0.0325 0.0136

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
Sample restricted to municipalities within 100 kilometers of a thermal power plant.
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Table 4: The Impact of Thermal Generation on Morbidity, Costs, and Mortality, by Age

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

A. Infants (Less than 1 year old)
Scarcity Day x High Capacity 3.32 0.37 0.95 -0.032 -0.021 0.0028

(3.50) (0.30) (0.82) (0.21) (0.13) (0.0046)
Dep. Var. Mean 68.85 1.156 16.68 0.815 0.269 0.00460

B. Children (Ages 1-14)
Scarcity Day x High Capacity 2.39 0.27** 0.55 0.082 0.021 -0.00036

(1.50) (0.11) (0.35) (0.052) (0.022) (0.00041)
Dep. Var. Mean 32.11 0.791 10.08 0.428 0.0489 0.000503

C. Youth/Adults (Ages 15-59)
Scarcity Day x High Capacity 1.40** 0.095 0.32** 0.40 0.0047 -0.0013

(0.61) (0.58) (0.15) (0.32) (0.0059) (0.0020)
Dep. Var. Mean 13.66 18.17 4.403 8.799 0.0140 0.00525

D. Elderly (Over 60 years old)
Scarcity Day x High Capacity 3.59** 0.023 1.21** 3.56 0.015 0.066**

(1.77) (6.42) (0.56) (3.32) (0.015) (0.027)
Dep. Var. Mean 40.10 178.6 14.94 86.80 0.0599 0.0768
Observations 1449819 1449819 1449819 1449819 1449819 1449819

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
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Appendix Figures and Tables

Figure A1: Average Daily Generation by Technology

Notes: “Thermal Other” includes jet fuel, fuel oil, and kerosene. “Other” includes biofuel cogeneration and
wind power.
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Figure A2: Municipalities in Sample

Figure A3: Number of Health Facilities Reporting to RIPS

Notes: Number of health facilities that reported to the RIPS in each month.
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Figure A4: Event Study Results

A. Respiratory Morbidity B. Respiratory Costs

C. Cardiovascular Costs D. Cardiovascular Mortality

Notes: Event study coefficients (and 95% confidence intervals) depicted are the coefficients on the
interactions between indicators for each quarter and the high capacity indicator. The first coefficient
represents all months before 2014, combined, while the last coefficient represents all quarters in 2017,
combined. Standard errors are clustered at municipality level. All regressions control for municipality fixed
effects, date fixed effects, state-by-year fixed effects, number of health facilities reporting to the RIPS, and
cubic functions of temperature, precipitation, and wind speed.
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Table A1: Pollution and Weather Summary Statistics

Mean Std. Dev. Obs
(1) (2) (3)

Pollutants (µg/m3)
PM2.5 22.99 17.59 38,665
PM10 48.78 366.34 81,082
SO2 9.87 34.77 30,905
CO 1080.76 784.05 32,014
NO2 42.83 428.35 38,737
O3 46.66 793.42 60,732

Weather
Average Daily Temperature (C) 17.15 5.82 513,143
Average Daily Rainfall (mm) 5.96 13.16 258,219
Average Daily Wind Speed (m/s) 2.36 3.28 271,200

Notes: Sample spans the years 2011-2017 and restricts to pollution measurement stations located within
100 kilometers of a thermal power plant. Unit of observation is a station-day.
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Table A2: The Impact of Thermal Generation on Morbidity, Costs, and Mortality from
External Causes

Injuries
Morbidity Costs Mortality
per 100,000 per person per 100,000

(1) (2) (3)
Scarcity Day x High -0.026 -0.018 0.0020
Capacity (0.043) (0.017) (0.0015)
Observations 1449819 1449819 1449819
Dep. Var. Mean 0.901 0.323 0.00168

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
Sample restricted to municipalities within 100 kilometers of a thermal power plant.

Table A3: The Impact of Thermal Generation on Morbidity, Costs, and Mortality, by Mu-
nicipality SES

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

Scarcity Day x High Capacity
Low Education 2.83* 0.85* 0.0023 0.25 0.66 0.0097

(1.45) (0.45) (0.0047) (1.78) (0.76) (0.0066)
High Education 2.02 1.13** 0.0081 1.41 1.20 0.0048

(1.23) (0.46) (0.019) (1.56) (0.73) (0.0036)
Difference 0.82 -0.28 -0.0058 -1.16 -0.54 0.0049

(1.90) (0.64) (0.020) (2.37) (1.06) (0.0075)
Observations (Full Sample) 1447262 1447262 1447262 1447262 1447262 1447262
Dep. Var. Mean (Full Sample) 22.80 9.289 0.0326 33.36 15.65 0.0136

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
“Low Edu” and “High Edu” municipalities are those with average education levels below and above the
municipality-level median, respectively. Sample restricted to municipalities within 100 kilometers of a
thermal power plant.
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Table A4: The Impact of Current, Lead, and Lagged Thermal Generation on Morbidity,
Costs, and Mortality

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

Scarcity Day x High 2.82*** 0.85*** 0.0092 0.80 0.81* 0.0083**
Capacity (0.99) (0.28) (0.012) (1.23) (0.48) (0.0040)

Week Before Scarcity 0.042 0.036 0.010 0.44 0.043 0.0067
Period x High Capacity (0.85) (0.26) (0.010) (1.04) (0.45) (0.0060)

Week After Scarcity 0.52 0.048 0.015 1.36 0.29 0.029***
Period x High Capacity (0.84) (0.24) (0.014) (1.02) (0.46) (0.011)
Observations 1024651 1024651 1024651 1024651 1024651 1024651
Mean of DV 22.6 7.52 0.030 32.5 12.8 0.013

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
Sample restricted to municipalities within 100 kilometers of a thermal power plant.

Table A5: The Impact of Thermal Generation on Pollution Levels (120 kilometer cutoff)

(1) (2) (3) (4) (5) (6)
PM2.5 PM10 SO2 CO NO2 O3

Scarcity Day x High 5.45*** 3.77** 2.61*** 134.7* -3.12 -0.35
Capacity (1.78) (1.57) (0.86) (75.0) (2.35) (2.03)
Observations 38665 80270 30905 31693 38349 60124
Mean of DV 23.0 45.5 9.87 1036.4 29.4 24.8

Notes: Standard errors (clustered at station level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01. All
regressions control for station fixed effects, date fixed effects, state-by-year fixed effects, and cubic functions
of temperature, precipitation, and wind speed. Sample restricted to stations within 120 kilometers of a
thermal power plant.
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Table A6: The Impact of Thermal Generation on Morbidity, Costs, and Mortality (120 km
cutoff)

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

Scarcity Day x High 1.28 0.17 0.74** 0.64 -0.0041 0.0060*
Capacity (0.86) (1.04) (0.30) (0.50) (0.010) (0.0034)
Observations 1718304 1718304 1718304 1718304 1718304 1718304
Dep. Var. Mean 23.34 33.47 9.495 15.86 0.0375 0.0141

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
Sample restricted to municipalities within 120 kilometers of a thermal power plant.

Table A7: The Impact of Thermal Generation on Morbidity, Costs, and Mortality: Alter-
native Specifications

Morbidity per 100,000 Costs per person Mortality per 100,000
Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

A. Group-specific weather controls
Scarcity Day x High Capacity 2.30** 0.58 0.93*** 1.07** 0.0099 0.0071*

(0.91) (1.15) (0.31) (0.52) (0.011) (0.0037)

B. Group-specific month fixed effects
Scarcity Day x High Capacity 1.95** 0.40 0.87*** 1.13** 0.011 0.0083**

(0.96) (1.22) (0.32) (0.55) (0.012) (0.0042)

C. Group-specific linear trend
Scarcity Day x High Capacity 1.76* 0.36 0.79*** 0.79 0.0026 0.0068*

(0.92) (1.13) (0.29) (0.51) (0.0088) (0.0038)
Observations 1449819 1449819 1449819 1449819 1449819 1449819
Dep. Var. Mean 22.79 33.35 9.287 15.64 0.0325 0.0136

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.
All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of
health facilities reporting to the RIPS, and cubic functions of temperature, precipitation, and wind speed.
Sample restricted to municipalities within 100 kilometers of a thermal power plant. “Group-specific”
controls are controls interacted with the high capacity indicator.
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Table A8: The Impact of Thermal Generation on Pollution Levels

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
PM2.5 PM2.5 PM10 PM10 SO2 SO2 CO CO NO2 NO2 O3 O3

Scarcity Day x High 9.90*** 7.22*** 7.45* 6.99** 3.26*** 2.42** 62.7* 75.7 -0.027 0.36 -1.40 -1.63
Capacity (1.17) (1.37) (3.81) (3.22) (1.11) (1.00) (35.9) (61.3) (1.83) (1.96) (1.63) (1.81)

Scarcity Day 4.13*** 4.05*** -0.060 19.5 2.90* 4.49***
(0.95) (0.98) (0.88) (38.9) (1.66) (1.41)

Observations 27394 26635 65129 65129 30905 30905 27950 27950 25326 25326 48810 48810
Mean of DV 20.3 20.1 43.7 43.7 9.87 9.87 966.1 966.1 27.1 27.1 24.3 24.3
Time Fixed Effects month

year
date month

year
date month

year
date month

year
date month

year
date month

year
date

Notes: Standard errors (clustered at station level) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01. All
regressions control for station fixed effects, state-by-year fixed effects, and cubic functions of temperature,
precipitation, and wind speed. Sample restricted to stations within 100 kilometers of a thermal power plant.
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