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Abstract

We use daily administrative data from a leading automobile manufacturer to study
the organizational impacts of introducing new models to the auto assembly line. We
first show that costly defects per vehicle spike when new models are introduced. As
a response, the firm trains in problem-solving skills and promotes lower- and mid-
level employees to solve the more complex problems that arise, thus moving to a less
pyramidal knowledge hierarchy with fewer layers. We develop an extension to the classic
theory of knowledge-based hierarchies that reconciles our novel empirical results by
allowing the firm to also invest in its training resources.
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1 Introduction

Industrial innovation is a key driver of economic growth (Grossman and Helpman, 1991b).

Identifying which firm-level factors enable or constrain quality upgrading and process im-

provement is thus critical to understand why some firms increase their productivity and

grow while others lag behind. As summarized in a recent review by Verhoogen (2021),

studies of firm-level upgrading have emphasized the importance of several factors enabling

the production of higher quality goods, such as plant size and quality of inputs (Kugler and

Verhoogen, 2012), competition in input markets (Amiti and Khandelwal, 2013; Fan et al.,

2015), access to export markets (Atkin et al., 2017b; Verhoogen, 2008), managerial skill and

know-how (Adhvaryu et al., 2019; Bandiera et al., 2020; Bloom and Van Reenen, 2007, 2010),

and knowledge spillovers (Bai et al., 2021).

One area which has received relatively little attention, however, is the study of the

personnel and organizational adjustment costs firms face when upgrading. That is, how

does the internal organization of the firm respond to the introduction of new products to

enable upgrading in practice?1 This question is particularly important in industries exhibiting

product cycles, where product innovation can be frequent and relentless, as firms develop

new generations of products to remain profitable when the production of current generations

becomes imitable (Bayus, 1994; Grossman and Helpman, 1991a,b, 1994; Krugman, 1979;

Vernon, 1966). Product cycles may demand substantial adaptation from upstream suppliers

or subsidiaries, often in developing countries, who must deal with new and increasingly

complex parts and processes.

This paper studies how firms manage production changes arising from the product cycle.

We focus on the production of new models of automobiles, a prototypical example of product

cycles. Leveraging daily administrative data from a leading global auto manufacturer and

using event-study and discontinuity-based methods, our core contribution is to trace out

the organizational responses to product cycles. We focus on two main ways in which firms

may respond. First, they may increase the knowledge of their workers to manage these

changes through training provision: a long literature has studied the degree to which firms

engage in on-the-job training (Acemoglu and Pischke, 1998, 1999; Becker, 1962), with recent

empirical studies identifying large potential returns to such training (Adhvaryu et al., 2018;

Espinosa and Stanton, 2022; Sandvik et al., 2020). Second, firms may change their internal

organizational structure to facilitate problem solving: a parallel literature has modeled and

1A related literature studies the role of employee incentives and relational contracts within the firm
(Amodio and Martinez-Carrasco (2018); Atkin et al. (2017a); de Rochambeau (2017); Kelley et al. (2021)), as
well as the role of discrimination within the firm and biased beliefs on employee skills (Ghosh (2022); Hjort
(2014); Macchiavello et al. (2020)) as organizational barriers to upgrading and productivity.
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empirically tested predictions on how the distribution of knowledge within the firm might

change as the firm re-optimizes under new production goals (Caliendo et al., 2020, 2015;

Caliendo and Rossi-Hansberg, 2012; Garicano, 2000; Garicano and Rossi-Hansberg, 2006).

Our data comes from an Argentinian subsidiary plant of the auto manufacturer. We

begin by showing that demand (planned number of vehicles produced) and number of total

parts do not change in the short term after a new model is introduced; the main change is a

large, discontinuous increase in new parts: after a model change, about 13-15% of the parts

that need to be assembled are new. The production of new models thus necessitates the

solving of novel problems that arise when first interacting with new parts. For example, if

the buttons on the dash console or the front bumper for the new model are of a different

shape or material than for the previous model, the angle and force which were used when

attaching these parts in the previous model may no longer be appropriate. But the factory

faces great difficulty in predicting which parts or operations may encounter these problems,

let alone what the appropriate solution may be. As a result, we show that defects per vehicle

(DPV) spike immediately by 2 standard deviations after the model change on average and up

to 5 standard deviations after those involving a higher share of new parts. The factory is

able to bring DPV back down to their prior level over approximately a three-week period on

average, though it takes more than twice as long after model changes involving more new

parts. This increase in defects created by new product introduction, though it is temporary,

is indeed costly to the firm, as a day in which DPV is even just 1 SD over the mean results

in an unrecoverable reduction in cars produced of nearly 20%.

We next ask how changes in the firm’s organizational decision-making facilitate the

problem-solving required to bring defects back down to a minimum in such a short time.

Using granular data on training completed by all workers and on the hierarchical structure

of each working group, we find that when a new model is introduced on the assembly line,

the firm upskills lower and mid-level workers in problem-solving and communication skills

via internal training, which increases the number of middle and high level managers in the

working group who are able to solve the new problems arising on the production line. As

a result, the aggregate level of skill capital within each group, and accordingly the firm,

increases. The shape of working groups changes from markedly pyramidal to more rectangular,

with the ratio of frontline workers to middle and upper level managers (i.e., what is referred

to as the problem-solvers’ span of control in Garicano (2000)) dropping significantly by .5

from a mean of 4 or 5.

Working groups also become flatter with less hierarchical knowledge layers. The firm

delineates 16 possible knowledge layers reflecting the amount of cumulative training the

worker has accrued. A working group has on average 20 workers spread across 6-7 of these
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layers. Following a model change, we find a significant reduction in the number of hierarchical

layers within working groups, which decreases by about 1 layer in the first three weeks after

the model change. The firm starts to back-fill lower-level positions after defect rates recover

to pre-model-change levels such that the number of hierarchical knowledge layers in working

groups on average reverts, but working groups remain higher skill and more rectangular.

Finally, we use novel data from the firm’s continuous improvement system to document

impacts on problem-solving activities of workers at all levels of the working groups. This

system allows workers to report solutions they found to production problems to upper

management for the purpose of recognition and bonus pay as well as to proliferate solutions

which may have broader applications. We find, indeed, that in line with the removal of one

layer of the knowledge hierarchy, the increased training in problem-solving skills, and the

reduction in the span of control of mid and upper level workers we observe following the

introduction of a new model, the number of reports of solutions to problems from lower

and mid-level workers to upper management increases more than two to three-fold, both in

total and on a per employee basis. In sum, we document that both changes in the amount

of problem-solving knowledge and its distribution in teams by way of their organizational

structure are important levers used by the firm to deal with the spike in new problems after

model changes, bringing defects down to pre-change levels fairly quickly.

We then contrast these results with the impacts of increases in quantity produced of the

same model, for which we show the organizational response is a monotonic, permanent increase

in both employment and knowledge layers, consistent with prior evidence from manufacturing

in high-income countries (Caliendo et al., 2020, 2015; Friedrich, 2022). Importantly, the

increase in knowledge layers is not accompanied by an increase in average skill capital through

training when the change involves producing more of the same model. Rather, consistent

with problems arising from increased volume being routine and easily solved by frontline

workers, we see that the pyramidal shape of working groups becomes more pronounced with

their frontline bases growing; while middle and upper-level managers are shed to new working

groups. Accordingly, average skill in working groups drops as does the need to elicit help

from farther up the chain. Employment grows less than proportionately with output, as cars

per worker increase due to economies of scale. Finally, consistent with the additional layer of

problem-solvers in working groups and more pronounced pyramidal structure (i.e., increase

in span of control) following the volume change, we find that reports of solutions to problems

from lower and mid-level workers to upper management in the continuous improvement

system decrease significantly.

We interpret our empirical results in light of the canonical models of knowledge hierarchies

within the firm of Garicano (2000) and Caliendo and Rossi-Hansberg (2012). Exactly as
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in our results, as well as the empirical results of Caliendo et al. (2015) and Caliendo et al.

(2020), the canonical theory predicts that an increase in the volume produced of the same

model should result in an expansion of the hierarchy through the addition of frontline workers

and more knowledge layers: as production expands, adding layers allows the firm to focus

the scarce time of skilled managers on solving only the most complex problems. However,

this canonical theory does not predict the reduction in knowledge layers that we observe in

response to quality upgrading (i.e., the introduction of new models). In the canonical model,

the increase in problem complexity resulting from model changes should yield a reduction

in the ratio of frontline operators to problem-solvers we find (i.e., the problem-solvers’ span

of control), but would not yield a reduction in hierarchical layers, but rather an increase in

layers if anything, as each worker can solve a smaller fraction of the problems (which are now

more complex and/or frequent).

We note, however, that both Garicano (2000) and Caliendo and Rossi-Hansberg (2012)

explore comparative statics with respect to both problem complexity or frequency and cost of

acquiring knowledge, showing they move the choice of hierarchical knowledge layers in opposite

directions. Leveraging novel data on knowledge (i.e., completed trainings) of all workers

across layers, our results show that the firm chooses the cost of knowledge acquisition (via

costly investments in training efficacy) endogenously in response to the problem complexity

or frequency it faces. That is, we find that when a new model is introduced, the firm invests

in improving its in-house training programs by adding courses and bringing in new trainers.

Accordingly, we modify the canonical theory in line with this empirical observation to allow

firms to make a costly investment in increasing the efficacy of training. That is, training

becomes another lever the firm adjusts alongside the distribution of knowledge across layers.

We show that when quantity is fixed in the short-run, as both our empirical results and

anecdotes from the firm’s upper management confirm, the firm will reduce the number of

knowledge layers as a response to the increase in complexity or frequency of problems arising

from the introduction of new models. Intuitively, as the firm can train its workers more

efficiently in problem solving, it can have more managers farther up the hierarchy able to

solve more problems, with fewer knowledge layers needed to produce. We show that allowing

for endogenous investment in the productivity of training can reconcile our empirical results

on the impact of model changes on the internal organization of the firm. Indeed, the increases

in problem-solving activities we see at both the lower and mid-levels of the working group

reflect a combination of the results from comparative statics explored by Garicano (2000)

with respect to an increase in problem complexity and a decrease in the cost of acquiring

knowledge. Importantly, we show that volume changes still lead to an increase in the number

of knowledge layers in this extended version of the theory, consistent with both our findings
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and previous results in the literature. Taken together, when quantity is fixed in the short

run, the firm treats investments in training efficacy and the choice of layers as substitutes,

but when quantity can adjust in the long run these levers are complementary.

Related literature and contribution. We aim to contribute to the literature documenting

the importance of management and organizational design in determining the productivity and

growth of firms (Aghion et al., 2014; Bloom et al., 2013, 2010, 2016; Bloom and Van Reenen,

2007, 2010; Frederiksen et al., 2020; Hoffman and Tadelis, 2021; Metcalfe et al., 2023; Minni,

2022). In particular, we focus on the distribution of knowledge in teams and organizational

flexibility in dealing with external stimuli.2 Previous work in this area has focused quite

fruitfully on the effects of demand shocks (Caliendo et al., 2020, 2015; Garicano, 2000). We

build on the elegant theory developed in this and earlier work (most directly, the foundational

work of Garicano (2000) and Caliendo and Rossi-Hansberg (2012)) to demonstrate how the

quality upgrading in product cycles – and the increased complexity and/or frequency of

problems that results – generates quite clear, and distinct, changes to the knowledge hierarchy.

We use granular data (at the shift-by-day as opposed to yearly level as in previous work)

to document the surprising flexibility of organizational structure in response to product

cycles. We uncover that organizational structure can evolve very rapidly in response to

the introduction of new models, and note that these substantial changes undertaken by

the firm would be overlooked when relying on less granular data if, for example, the firm

experienced both model and volume changes between observations. We build an extension to

the canonical theory that allows us to reconcile the theory’s predictions with the empirical

patterns observed following product quality upgrading in product cycles.

Our study also adds complementary evidence to prior empirical studies of how organizations

achieve volume changes in response to demand shocks (Caliendo et al., 2020, 2015; Friedrich,

2022). Specifically, though on-the-job knowledge acquisition of workers across knowledge

layers in teams and the distribution of problem-solving responsibilities across these layers are

at the core of the original Garicano (2000) model, empirical evidence of impacts on workers’

stock of problem-solving knowledge across the hierarchy and their actual problem-solving

activities is limited by data availability. We use granular data on training completion of all

workers (including the degree to which course content covers skills relevant for communicating

about and solving problems), team composition, and records of individual problem-solving

activities from the continuous improvement system to fill these gaps.

In documenting the role of firm-provided training in dealing with product cycles, we also

2A related literature studies the allocation of workers to mangers within organizations (Adhvaryu et al.,
2020; Fenizia, 2022; Limodio, 2021).
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contribute to a large literature on the returns to on-the-job training within organizations.

This literature has highlighted that training provision to workers can have high returns for the

organization (Adhvaryu et al., 2018; Espinosa and Stanton, 2022; Hoffman and Burks, 2017;

Sandvik et al., 2020), as well as that firms may face challenges to allocating training efficiently

within the organization (Adhvaryu et al., 2022; Sandvik et al., 2022). Our contribution is to

show how training enables firms to deal with product innovation and quality upgrading, and

to highlight its interaction with changes in organizational structure (or how knowledge is

distributed) in helping firms achieve product quality upgrading. In studying the stock and

distribution of knowledge within the organization, our paper also relates to the literature

studying knowledge spillovers between co-workers (Guillouet et al., 2021; Jarosch et al., 2021)

and between workers at firms located near each other (Atkin et al., 2022).

We also add to the understanding of the personnel and organizational adjustment costs

involved in product quality upgrading. Much of the literature on upgrading in quality,

technology, and/or product innovation has emphasized the roles of drivers on both the output

and input sides, as well as firm knowledge in the forms of managerial skill and learning (see

Verhoogen (2021) for a thorough review). Less attention has been paid to how suppliers are

able to adapt to consumer-demand-driven product quality upgrading; this is particularly

relevant in industries exhibiting product cycles, in which product innovation is frequent and

relentless (Grossman and Helpman, 1991a,b, 1994). In nearly all industries in which product

cycles feature heavily, consumer-facing firms either contract with suppliers or have their own

operations in the “global south.” This means that the firms that actually deal with the

continual increase in complexity generated by innovation are different from the firms actually

doing the R&D. Understanding the behavior of these suppliers and their ability to adapt to

product cycles is thus of first-order interest to understand the global patterns of trade that

are created by continual innovation.

Finally, our results documenting investments in knowledge, particularly problem-solving

skills, via training and how this knowledge is distributed within teams contribute to the

learning by doing patterns that have long been studied in economics (see, e.g., Adhvaryu

et al. (2019); Arrow (1962); Irwin and Klenow (1994); Thompson (2010), among numerous

others). Our study is closest to Levitt et al. (2013) who also study an automobile assembly

plant and document similar spikes in DPV at the start of production of a new model in a

team-based approach and subsequent reductions over time. They show that these learned

improvements are not held by the workers themselves but rather in the form of “organizational

capital”. Specifically, they describe a whiteboards system in which frontline operators reported

problems to higher knowledge level workers (i.e., managers and quality control engineers) who

designed and communicated solutions. Our results complement these findings in providing

6



novel empirical evidence of both investments in problem-solving skills along the hierarchy and

changes in the shape of teams, both in terms of number of hierarchical knowledge layers and

whether the distribution of workers across these layers yields more pyramidal or rectangular

shaped teams. We interpret the training in problem-solving skills and changes to the shape

of teams, as well as the solutions to problems that they enable, as specific examples of the

“organizational capital” which Levitt et al. (2013) argue embodies the gains from learning.

Structure of the paper. The rest of the paper is organized as follows: Section 2 describes

the setting of our study and the data used for estimation. In Section 3 we describe the

empirical strategy, and Section 4 shows the results on the organizational response to discrete

changes in both the models and the quantity of cars produced. In Section 5, we introduce a

model to reconcile our results with standard models of knowledge hierarchies within the firm.

Section 6 concludes. Additional details are in the Online Appendix.

2 Context, Data and Descriptives

In this section, we describe the setting where our study takes place and the data used for

estimation.

2.1 Context, Organization of Production, and Product Cycles

We partnered with a leading global auto manufacturer subsidiary plant located in Argentina.

The plant began operating in the 1990s and now produces more than 140,000 cars per year,

employing over 3,400 workers. Around two-thirds of the production is exported to different

countries in Latin America, and the rest is dedicated to the local market.

2.1.1 Production Process

Production takes place in a production line setting. The production line is made up of eight

sectors: Press, Welding, Painting, Frame & RX Axle, Engines, Resin, Assembly, and Quality

Check. The different parts of a production unit (i.e., a car) are produced in parallel by

different sectors of the production line: chassis and car-body components are manufactured

and connected by Press and Welding respectively, the rest of the parts are manufactured

by Frame & RX Axle, Engines, and Resin. Finally, these different parts are all assembled

together in the Assembly sector. Assembly is one of the most delicate phases of production,

with 75% of the defects per vehicle occurring at this stage of the production process. Our
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study focuses on the Assembly sector, both because it is where the majority of defects occur

and because we are able to track working group composition for this department.

2.1.2 Organization of Labor, Knowledge Hierarchies and Training

Production line workers are divided into working groups within each sector of the line. The

plant has two shifts per day (morning and afternoon) with each working group operating in

one of the two daily shifts. Employees within each working group are organized in a clear

production hierarchy, characterized by different knowledge layers. Workers are assigned to

the different layers depending on the tasks they perform and the skills they have accumulated.

Employees can accumulate skills by receiving in-house training programs provided by the

firm. A diagram of the hierarchical structure of working groups is shown in Table 1.

There are three main employee categories within the hierarchy. The first are Front-line

Operators (FL), who engage in production tasks on the production line. Above FL workers are

Mid-line Operators (ML), who are tasked with identifying and solving production problems

and closely supervising and helping FL workers whenever problems or bottlenecks occur.

Finally, above ML workers are Superiors (S), who are in charge of supporting and managing

the overall working group performance.

If an FL worker faces an issue with the assembly process, one of the ML workers makes a

quick diagnosis of the issue and offers a solution to the FL worker. In case the issue exceeds

the knowledge of the ML worker, the problem is then directed to the Superior.3 Accordingly,

the hierarchical structure is pyramidal in shape. The typical working group has about 20

workers, divided into about 16 FL workers, 3 ML workers and 1 S worker.

Within each main employee category (i.e., within the FL, ML and S categories), employees

are then divided into different layers, depending on their skills and training received. FL

workers are divided into three possible layers of New Front-line Operators (New FL), four

layers of Regular Front-line Operators (Reg FL), and one layer of Mid Front-line Operators

(Mid FL). New FL are the lowest level of the hierarchy, comprising workers who have recently

started and have received only basic training. Reg FL workers are more experienced and

skilled, having typically spent at least a year on the production line and having completed

at least five training programs, and Mid FL are the highest skilled within the FL category,

having more than two years of experience and having gone through 13-14 training programs.

ML and S workers are subdivided into four layers each, again based on their training. So, in

total, there are 16 possible employee layers that a working group can have – eight within

FL workers, four within ML workers, and four within S workers. Each of these 16 layers is

associated with a different level of training and therefore knowledge acquired by the workers

3Superiors are supervised by Line Superiors, who are tasked with overseeing multiple working groups.
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in that layer. A given working group does not necessarily have an employee from each of the

16 layers.

Most new employees start as FL workers with the lowest levels of basic skills (i.e., they

start in the first layer as New FL Operator 1). Workers are promoted as they gain experience,

complete specific training programs, and develop new job skills required for each layer, as

shown in Table 1. For instance, as the New FL gain experience and skills they can get

promoted first to the higher layers within the New FL category (e.g., from New FL Operator

1 to New FL Operator 2), and then across categories (e.g., from New FL Operator 3 to Reg.

FL Operator 1) all the way up the hierarchy.

The firm provides training to its employees; and through such training, employees can be

promoted to higher positions in the working group and advance their professional careers.

Training is provided in-house through training programs administered by trainers and is

primarily focused on management, problem solving and alignment of production line activities

with company targets, rather than on technical skills to operate machinery on the production

line.

More advanced training programs place a greater emphasis on problem solving and

management. Specifically, 78% of the courses required for FL workers to be promoted to ML

positions are related to identifying problems, coming up with solutions, and coordinating

production to minimize waste and slow-downs. 91% of the courses required to advance from

lower ML to upper ML positions are related to these topics; while 68% of the courses required

to advance from ML to S positions cover these topics, with the remaining courses covering

more managerial topics.4

2.1.3 Problem-Solving in Working Groups and Continuous Improvement System

The assembly line operates almost entirely sequentially such that issues at one process or

station along the line will lead to stoppages of the entire line, slowing the flow of completed

vehicles out of the end of the line. At a given set “takt” time (i.e., the planned production

time), the line would generally produce a fixed number of cars each day or shift. The major

variation in output or productivity (i.e., cars completed per unit time) comes from these

stoppages due to problems and any defects they cause.

Accordingly, each working group’s ability to solve problems quickly is critical. Indeed,

the pyramidal hierarchical structure of the working groups and the bulk of the content of

the training together emphasize the importance of problem-solving in this context. Though

problems may arise even during business as usual operations, from machine malfunctions

4These percentages reflect the share of courses with this content, but share of training hours yields similar
magnitudes.
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Table 1: Hierarchical Structure of Working Groups

Employee layer Tasks/Responsibilities Cumulative training

S

Superior 4

Support and manage overall working group
performance

17 to 20 training programs
Superior 3
Superior 2
Superior 1

Mid-line Operator 4
Mid-line Operator 3
Mid-line Operator 2

ML

Mid-line Operator 1

Identify production problems; closely
supervise front-line workers to ensure
production standards are met

14 to 17 training programs

Mid Front-line Operator Engage in production tasks; support other
front-line operators

13 to 14 training programs

Reg. Front-line Operator 4 12 to 13 training programs
Reg. Front-line Operator 3 10 to 12 training programs
Reg. Front-line Operator 2 8 to 10 training programs

FL

Reg. Front-line Operator 1

Engage in production tasks

5 to 8 training programs
New Front-line Operator 3 4 to 5 training programs
New Front-line Operator 2 1 to 4 training programs
New Front-line Operator 1

Engage in production tasks; learn basic skills

0 to 1 training programs

Note: Table 1 shows a diagram of the hierarchical structure of working groups. For each employee layer,
the diagram shows (i) typical tasks and responsibilities; and (ii) the cumulative number of training
programs typically received by workers in a given layer.

for example, problems of the greatest complexity (or novelty) and in the greatest frequency

occur when the product changes and when the takt time or planned production is adjusted.

Given the importance of diagnosing and solving problems quickly throughout the year

including at these times of production changes, the firm has in place a continuous improvement

system in which workers are encouraged and even incentivized (both monetarily and by way

of recognition) to record solutions they find to problems, with these records reviewed by upper

management. The goal is both to elicit maximal effort from workers as well as to leverage

opportunities to proliferate solutions which may apply more broadly across the production

process. As we discuss further below, these records prove invaluable in our analysis as they

allow us to study impacts on how many problems are being solved in each working group

and by whom (i.e., from which knowledge layers).

Note that: (i) the structure of the working groups; (ii) the specific knowledge that higher

levels obtain via required training for promotion; (iii) the fact that productivity is increased

mainly by minimizing stoppages and defects from production problems; (iv) and the firm’s

clear valuing of problem-solving all underscore the link between production settings of this

sort and the intuition at the heart of the knowledge hierarchies models of Garicano (2000) and

Caliendo and Rossi-Hansberg (2012). The features of this context, however, are not unique to

this firm. These processes and systems are ubiquitous across the automobile manufacturing

industry, and indeed make up the core of the mechanism for organizational learning presented
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in Levitt et al. (2013). Furthermore, lean manufacturing and continuous improvement are

regarded as frontier production practices across most manufacturing contexts. For example,

Adhvaryu et al. (2023) study this same system in electronics manufacturing factories in

Thailand. Relatedly, communication and problem-solving skills of both frontline operators and

production team supervisors contribute greatly to productivity in Indian garment factories

(Adhvaryu et al., 2018, 2022, 2019).

2.1.4 Product Quality Upgrading and Changes in Production Volume

In our analysis, we exploit two types of discrete changes to the production process. First,

we exploit the fact that the product cycle is characterized by the frequent changes in model

variants over time. Over our sample period, the company manufactures two auto models,

which are continually updated through new model variants, usually every two or three years.

Most changes tend to be made to the bumpers, lights, grille, wheels, and color options. As we

will document in our data, such model changes result in a significant increase in the number

of new parts that have to be produced and assembled, with resulting changes in the types

and frequency of problems that arise on the assembly line.

One important point that was emphasized in discussions with factory management, and is

reflected in the event study plots we present below, is the inability to predict which operations

will face problems when the new parts for the new model are introduced. For example, the

bumper on the new model may appear to be nearly identical to the old one, but if it is of a

slightly different shape or weight or made of slightly different material (or even just purchased

from a different supplier) the angle or force used when installing the bumper may require

adjustment. Accordingly, working group Superiors cannot warn operators in advance of the

problem let alone suggest an appropriate solution. Rather, the working groups must rely on

the problem-solving skills that have been imparted to high level FL, ML, and S members of

the team to diagnose the causes of defects (like cracked or crooked bumpers) only after they

arise, and to suggest and implement solutions in a timely manner.

On a tour of the factory one such example was highlighted: a bumper attachment was

being performed with minimal to no defects for the prior model, but when the new model was

introduced the new bumper was heavier and attached slightly differently to account for the

weight. After the switch to the new model, a high proportion of bumpers were being attached

crooked or otherwise imperfectly. That this process would be one that would produce defects

could not easily be predicted by any of the team members as they had never tried to attach

this particular part before. In this particular instance, an ML in the working group diagnosed

that the root cause was the new weight and angle such that having to hold the bumper in

place while attaching it was not as easy for this new model as it had been for the prior model.
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They suggested a hydraulic lift be used to hold the bumper at the correct height so that the

worker could focus their time and attention on simply attaching it correctly. This simple

adjustment allowed the operation to be accomplished once again with minimal to no defects.

Second, we exploit the fact that the plant expanded its production volume from around

90,000 cars per year (at a takt time of roughly 145 seconds) to around 140,000 (at a takt time

of 90 seconds) in seven years, between 2011 and 2018. This expansion occurred progressively

through a sequence of discrete “jumps” in the number of cars that the plant was asked to

produce by the manufacturer. Such volume changes result in a substantial increase in the

number of cars that have to be produced, but not in the complexity of what needs to be

produced since the model does not also change at the same time.

However, despite the fact that no new parts or processes are introduced, new problems

still arise; and once again, where these will arise is hard for management to predict. This is

because some processes will have enough slackness to easily keep up with the new faster takt

time, while others will have to be re-engineered to achieve the new pace (often by splitting

the operation into multiple steps to be done by additional workers or even additional working

groups). Which operations will be challenging and produce defects at the new pace is not

easily predicted by any of the team members as they have never tried to perform the operation

(or seen it performed) at the new pace before.

It is important to note that the plant has no discretion as to whether or when to implement

model and volume changes: such decisions are made by the manufacturer. The plant is tasked

only with executing production. Our interest is precisely in studying the organizational

responses put in place by the plant as a response to such product cycles and volume changes.

2.2 Data and Descriptives

We use data from the Assembly sector as that is the most labor-intensive sector and accounts

for most of the defects per vehicle in the plant. Our data comes from four main sources. The

first is data on productivity, employment, and training received by employees at the shift-day

level. The second is daily data on the composition of each working group, in terms of the

number of employees by knowledge layer. The third is daily records of problems identified

and solved by each employee. The fourth is a record of the exact dates when the introduction

of new model variants and changes in the production volume took place.

2.2.1 Productivity, Employment and Training

We have access to daily productivity data for each shift in the Assembly sector from January

2012 to February 2019. The data include the number of cars produced per day for each model
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and the number of defects per 100 vehicles produced (DPV). The DPV is a key performance

indicator that the plant uses to monitor productivity for each shift-day.

Panel A of Table 2 presents summary statistics for our two key productivity variables of

interest at the daily level.5 The plant is large, producing around 410 cars per day. However,

there is significant variation in the number of cars produced; across days due to stoppage and

defects and dramatically from the start of our observation period to the end due to several

discontinuous drops in takt time. We standardize the number of defects per vehicle using the

mean and standard deviation of the full sample, so that our DPV measure has mean 0 and

standard deviation 1.6

Our data shows that the incidence of DPV is associated with a sizeable decrease in the

number of cars produced per day, thus confirming that DPV is an appropriate measure of

productivity in this context. More precisely, Appendix Figure A2 displays the coefficients of

a Distributed Lag Model where we regress the number of cars produced per day on lags of an

indicator variable equal to 1 if the plant experienced a DPV 1 standard deviation above the

mean on a given day. The figure shows a contemporaneous decrease of roughly 50 cars the

same day the plant experiences high DPV. The negative effect persists the next day with a

loss of another 10-15 cars and fades quickly thereafter. Importantly, there is no evidence of

a significant increase in number of cars produced in subsequent days, thus confirming that

high DPV on a particular day is associated with an overall permanent (i.e., unrecoverable)

reduction in the total number of cars produced.

We also have data on employment in the Assembly sector between January 2017 to

February 2019. The data includes information on the date of hiring (and exit) from the plant,

whether the worker is present at the factory on any given day, current position and historical

data on previous positions, as well as completion date and course type of each training

program received by each worker. Panel B of Table 2 presents basic summary statistics on

the number of employees in Assembly, where information on employment is averaged at the

weekly level to minimize measurement error related to short-term absences from the plant.7

There are on average 1,187 employees each week: 966 front-line employees, 170 mid-line

employees and 51 superiors, confirming the pyramidal structure described above. The average

5Productivity data is originally at the day-shift level. To go to the daily level, we sum the number of cars
and average the defects per vehicle across the two shifts within the same day.

6To protect the confidentiality of the plant, we were not allowed to disclose mean and standard deviation
of the DPV measure. Appendix Figure A1 shows the distribution of (standardized) DPV-day observations,
confirming that there is substantial variation in defects per vehicle across days.

7Note that such measurement error is not an issue with DPV measures as they are key daily KPIs for the
plant and so are carefully recorded in the administrative data. Our data on employment instead records the
number of employees present at the factory on a given day, and so is subject to potential measurement error
driven by short-term absenteeism.
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Table 2: Descriptive Statistics on Productivity, Employment and Training

Mean SD

Panel A: Productivity, daily level

Number of Cars 413.32 110.86
Defects Per Vehicle (DPV) 0.00 1.00

Number of observations 1590

Panel B: Employment and training, weekly level

Number of Employees 1187.07 224.05
Front-line Employees (FL) 965.82 195.10
Mid-line Employees (ML) 169.81 26.73
Superior Employees (S) 51.44 3.37
Number of Working Groups 57.77 5.92
Avg Completed Training Programs 11.56 0.74
Avg Accumulated Training Hours 54.50 7.23

Number of observations 146

Panel C: Training courses, weekly level
Number of Courses 35.65 15.51
Number of Teachers 38.95 16.81

Number of observations 370

Note: Panel A shows descriptive statistics on productivity at the daily level, Panel B and C on employment and training
averaged at the weekly level, all for the Assembly sector. DPV is standardized using the mean and standard deviation of DPV
of the full sample.

employee has received 11.6 training programs, totalling about 55 hours of company-sponsored

on-the-job training.

Finally, we have data on the number of training courses provided by the plant each

week for the entire sample period (January 2012 to February 2019). Panel C shows that

the company engages in continual on-the-job training: in the average week the plant is

carrying out 36 separate training courses taught by about 39 trainers, although again there

is substantial week-to-week variation in the amount of training provided.

2.2.2 Composition of Working Groups

Our data allows us to track the exact composition of each working group for two years,

between January 2017 to February 2019. That is, we know the precise layer each employee
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belongs to (out of the possible 16 layers described in Table 1) and their accumulated training.

This enables us to identify promotions across layers within each employee category (e.g., New

FL 1 to New FL 2) and across categories (e.g., Mid FL Operator to ML Operator 1), as

well as moves across working groups over this period. Our data on the production hierarchy

within the firm is thus even more granular than the data used in recent papers studying

production hierarchies in French and Portuguese firms (Caliendo et al., 2020, 2015).8

Table 3 shows descriptive statistics on the structure of working groups at the weekly level

(so that the unit of observation is a working group in a week).9 The average size of each

working group is about 20, which includes around 16 FL workers, 3 ML workers, and 1 S

worker.10 We note that each of the 16 layers need not be, in fact are rarely, present in a given

working group at a given time. On average there are about eight layers of skills observed

across groups: five within FL, two within ML, and one within the S worker category.

Panel B reports the mean and standard deviation of the week on week change in the

number of layers of each working group over the sample period. Working groups are not

static: while the number of layers and ratio of FL to ML and S workers both tend to increase

on average over the sample period, there is substantial variation in the evolution of the

hierarchical structure of working groups. Working groups both add and remove layers and

each layer can both expand and contract over our sample period. Consequently, it is precisely

this organizational flexibility that we seek to analyze in the rest of the paper, exploiting our

granular data on the production hierarchy of the firm and training provision.11

8For instance, Caliendo et al. (2015) identify five separate hierarchical layers in their French data, and
Caliendo et al. (2020) identify eight hierarchical layers in Portuguese data. In contrast, we identify 16 layers.
Working with only one firm allows us to gather very granular data including employee-specific training and
problem-solving as discussed more below, although of course this comes at the expense of not being able to
analyze responses across many firms, as these other papers do.

9In the data, a working group is defined as a set of workers with the same Superior each day. We again
average at the weekly level to smooth out measurement error arising from short-term worker absences.

10There are some periods in which Mid-line workers act as Superiors. Such cases are limited however to
about 11 percent of working group-shift observations, which do not have a Superior.

11In the Appendix we show the evolution of average size of working groups (Appendix Figure A3a), average
number of layers in each working group (Appendix Figure A3b) and average number of working groups
(Appendix Figure A3c) over our sample period. Working groups grow from less than 17 workers to roughly
22 workers on average. Correspondingly, the number of layers in each working group climbs by roughly 1.5;
and the ratio of FL workers to ML and S workers grows from less than 4 to more than 5 on average. The
number of working groups also grows from roughly 95 to more than 125 on average. Note that employee
absenteeism and turnover contribute to creating some of the high frequency variation in these Appendix
Figures. Over the same period (from January 2017 to February 2019), the takt time falls from 110 to 90
seconds, corresponding to more than 20% growth in annual planned production from 115 to 140 thousand
cars per year. Our interest is in documenting systematic changes in these working-group level outcomes as a
response to the discrete introduction of new model variants or increases in the volume of production (i.e.,
reductions in takt time) over this period.
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Table 3: Descriptive Statistics on Working Groups and Employee Hierarchies

Mean SD

Panel A: Composition, weekly level

Number of Employees 20.25 8.23
Number of FL Employees 16.47 7.56
Number of ML Employees 2.89 1.27
Number of S Employees 0.89 0.31
FL/(ML+S) 4.56 2.23

Number of Layers 7.80 1.99
Number of FL Layers 5.02 1.65
Number of ML Layers 1.89 0.76
Number of S Layers 0.89 0.31

Number of observations 13,280

Panel B: Change in layers, weekly level

Change in Number of Layers 0.015 0.349
Change in Number of FL Layers 0.011 0.303
Change in Number of ML Layers 0.003 0.141
Changes in Number of S Layers 0.002 0.035
Changes in FL/(ML+S) 0.005 0.050

Number of Observations 13,060

Note: The information presented in Panel A is averaged at the working group-shift-week level. The changes in layers in Panel B
are computed as the average change in the number of layers in the working group at the weekly level.

2.2.3 Problem-Solving Records from Continuous Improvement System

As discussed above, the firm places a strong emphasis on problem-solving skills, particularly at

upper frontline and middle layers of working groups, and encourages workers to participate in

problem-solving by way of recognition and monetary rewards. To implement these incentives,

the firm has a continuous improvement system in which workers log any problem they solved.

The firm not only leverages these records to reward workers for their efforts, but also looks

for opportunities to proliferate solutions which may be more broadly applicable.

These records are ideal for an analysis of how problem-solving responsibilities evolve with

training and group compositional changes, as we can compute the daily number of problems

solved by each worker for 2018 and 2019, the period for which this data is available. Note that

the ease of using the system to record problems and the clear incentives to do so yield a likely
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complete record of the universe of problem-solving activities. Appendix Table A1 reports the

share of reports of problems solved by each knowledge layer as well as the average reports

per employee by layer. FLs contribute the largest share of problems-solved, particularly the

most knowledgeable layer among FLs (FL4). However, accounting for the number of workers

in each layer, we see that ML2s and ML3s solve the most problems per worker.

2.2.4 Model and Volume Changes

We observe seven discrete changes in the model variants produced during our sample period,

as a result of product quality upgrading spurred by automotive industry product cycles. We

call these “Model changes.” We also observe five discrete changes in production volume, as a

result of the overall expansion of production and reduction in takt time described above. We

call these “Volume changes.”

On average, with each Model change, 14% of the car parts are modified, so that the

production line needs to deal with such new parts. This share of new parts can be as high

as 88% for major generational model changes, and we use this heterogeneity below in our

analysis. However, the number of cars the plant plans to produce does not change. In

contrast, Volume changes represent a discrete increase in the number of cars the factory plans

to produce, which jumps up by 16% on average, again with substantial heterogeneity in the

magnitude of the increase which we exploit in our analysis below. However, Volume changes

do not bring about new parts, as the model that is produced does not get updated. As such,

the production line needs to deal with more of the same tasks. Additional summary statistics

on the Model and Volume changes that we exploit are reported in Appendix Table A2.12

Model and Volume changes are therefore very different in nature: Model changes require

dealing with new parts, but without a change in overall quantity produced; Volume changes

require producing a higher quantity of the same product. Our data allows us to study

organizational responses to both types of events within the same context.

3 Empirical Strategy

Our aim is to study how training provision and the internal organization of the firm change in

response to the Model and Volume changes described above. We begin the empirical analysis

by showing how Model changes impact the share of new parts and, as a result, productivity

(measured by the occurrence of DPV). We then study how the stock of knowledge and the

shape of working groups change in response. Then, we contrast the impacts of Model changes

12Two of the five Model changes and two of the seven Volume changes take place in the period between
January 2017 to February 2019 when we have data on employment and the composition of working groups.
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to those of Volume changes to highlight the different effects of needing to deal with new

tasks, as opposed to needing to conduct more of the same tasks. In doing so, we highlight the

unique implications of product quality upgrading for the internal organization of the firm.

To answer these questions, we exploit the high-frequency nature of our data to implement

event studies and regression discontinuity specifications around the exact time of such changes.

The event studies allow us to trace out the dynamics of the impacts. The discontinuity in time

specifications allow us to provide a useful summary point estimate of the impacts averaged

over the time period under consideration. Next, we describe both sets of specifications.

3.1 Event Studies

For our key productivity outcome of DPV, which is available at the level of each shift in each

day, we estimate the following specification:

Yst = θs + γm + γy +
∑

k≥−b,k≤b,k ̸=−1

βkD
k
t + δXt + ϵst (1)

where Yst is the outcome measured in shift s and day t. Dk
t is an indicator of the distance

with respect to the (Model or Volume) change, where k indicates the distance to the event

on day t. In our dataset we know the exact day when the event takes place. b represents

the bandwidth (window of time) considered in the event study. Following Calonico et al.

(2014) we find that the optimal bandwidth for Model changes when using the DPV measure

as the outcome is 40 days (8 five-day working weeks) before and after the event. We use

this bandwidth throughout for both Model and Volume changes and so set b = 40.13 Our

specification controls for shift fixed effects (θs) and year and month fixed effects (γm and γy)

to net out any shift-specific effects and to control flexibly for time trends and seasonality.

Additionally, we control for linear distance to other events (e.g., when looking at a given

Model change, we control for distance to all other Model and Volume changes) and a linear

time trend (Xt). Finally, standard errors are clustered by week-shift level.

For the outcomes at the level of individual working groups (e.g., composition of the

working groups), we estimate a specification similar to equation 1 but with information at

the working group-week level:

Yiw = θi + γm + γy +
∑

k≥−b,k≤b,k ̸=−1

βkD
k
w + δXw + ϵiw (2)

where Yiw is the outcome of group i in week w. Dk
w is an indicator for the distance with

13We use the same bandwidth for Model and Volume changes for ease of comparison of the results across
the two types of events. The optimal bandwidth is similar for Volume changes (25 days).
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respect to the event, where k indicates the distance to the event at week w. We use the same

optimal bandwidth as in equation 1, and so in this case b = 8 as this analysis is at the weekly

level. The specification further controls for working group fixed effects (θi), month and year

fixed effects (γm and γy), linear distance to other Model and Volume changes in weeks and a

linear time trend (Xw). Standard errors are clustered at the week-working group level.

Our parameters of interest are the βk. For k ≥ 0 (i.e., for time periods corresponding to

the time of the event or later) we interpret βk as the causal effect of the Model or Volume

change on the different outcomes at time k. All βk parameters are relative to the outcomes

in the time period immediately before the event k = −1, which is the excluded category in

these regressions.

Identification relies on the assumption that, after controlling for the linear time trend

and for month and year fixed effects, any discrete changes in the outcomes observed just

after the event are not due to underlying (residual) trends in the outcome variables. The

high-frequency nature of our data and our ability to focus on a narrow time window around

the events reassures us regarding the validity of this assumption. The focus on a narrow time

window reduces the possible concern that changes in the outcome variables after the Model

or Volume changes are due to other events affecting trends in productivity or organizational

structure (and we are controlling for distance from other Model and Volume changes). As

described in Section 2, the plant has no discretion over whether to implement changes in

models or volume; it simply has to execute production mandates handed down from the

global brand headquarters. Of course, there is still the possibility that such changes are

communicated to the firm in advance, which may lead to anticipation effects. The availability

of high-frequency data before the event allows us to test for the presence of such possible

anticipation effects. Lack of significance of the estimated βk in the time periods before the

event (i.e., k < −1) would provide evidence in support of the limited role of any anticipation

effects or other trends in potentially biasing our results.

3.2 Regression Discontinuity in Time

In addition to the event study specifications described above, we also estimate regression

discontinuities in time. Doing so allows us to estimate the average effect of the event in our

time window, thus providing a useful summary point estimate. This method also has the

advantage of pooling coefficients across time periods, thus improving precision.

For the DPV outcome, we estimate the following specification:

Ystw = θs + γm + γy + β1I(0 ≤ disw ≤ 3)w + β2I(4 ≤ disw ≤ 7)w + f(dist) + δXt + ϵstw (3)
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where Ystw is the outcome measured in shift s, day t and week w. I(0 ≤ disw ≤ 3)w is

an indicator for being four weeks (we define a week as five working days) after the event

occurring at time t. I(4 ≤ disw ≤ 7)w is an indicator for being more than four weeks after the

event at day t. Recall that the optimal bandwidth for the event studies was 40 days, which

guides our definition of the indicator functions. We control for shift fixed effects (θs), month

and year fixed effects (γm and γy). Additionally, we control for a function of the distance to

the event (f(dist)) in days, where we choose the linear function, and for the linear distance in

days to all other Model and Volume changes (Xt). Standard errors are clustered by distance

to the event-shift level.

For working-group level outcomes, we estimate a specification similar to equation 3 but

where the level of observation is a working group in a week:

Yiw = θi + γm + γy + β1I(0 ≤ disw ≤ 3)w + β2I(4 ≤ disw ≤ 7)w + f(disw) + δXw + ϵiw (4)

where Yiw is the outcome for working group i in week w. I(0 ≤ disw ≤ 3)w is an indicator

for being within four weeks after the event at week w. I(4 ≤ disw ≤ 7)w is an indicator for

being more than 4 weeks after the event. We control for working group fixed effects (θi),

month and year fixed effects (γm and γy), and for a linear function of the distance to the

event (f(disw)) as well as distance to all other events (Xw) in terms of weeks. Standard

errors are clustered by distance to the event-working group level.

Our parameters of interest are β1 and β2, which capture the average effect of each event

in the two narrow windows of time. This allows us to speak to the dynamics of the Model

and Volume changes, while still providing summary point estimates for the average effect of

each event.

4 Results

We present the impacts of Model and Volume changes, in turn. For both, we first validate

the nature of the event by studying impacts on planned number of cars to be produced and

corresponding parts and share of new parts, when relevant. Then, we report impacts on defects

per vehicle, to confirm that both types of changes have real implications for productivity,

showing heterogeneity by share of new parts and number of new hires, respectively, to link

defects to novelty. Next, we present impacts on knowledge (via training) and its distribution

within working groups, as well as the shape of working groups, to study how the organizational

responses the plant puts in place to bring down defects per vehicle differ across the two types
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of changes. Finally, we study problem-solving activities at the worker level across knowledge

layers in working groups to validate the interpretation of impacts as being driven by both

stock and distribution of problem-solving knowledge and responsibility. The full set of Model

changes results are summarized in a schematic in Appendix Figure A4; and the full set of

Volume changes results are summarized in a schematic in Appendix Figure A5.

4.1 Product Cycles

4.1.1 Validating Model Changes

Appendix Table A3 reports the results of regressions like equation 3 but where the outcome

variables are total number of cars planned for assembly per day, corresponding total number

of parts per day, and the share of parts that are new relative to the last model variant

produced just before the Model change.14 Columns 1 and 2 show that Model changes do

not result in a significant change in the number of cars produced nor in the total number of

parts used. The coefficients for both outcomes are small in magnitude relative to the mean.

Column 3 instead shows that Model changes result in an increase of at least 14% in the share

of parts that are new over the two months after the change. The increase in the share of

new parts remains positive and significant persistently after the Model change; however the

magnitude fluctuates due to variation in product mix.15 This confirms that Model changes

result in an increase in complexity of production as a substantial amount of new parts need

to be used to assemble the new model.

4.1.2 Impacts on Productivity

Figure 1 reports the results of an event study specification following equation 1 with (stan-

dardized) DPV as the outcome. The figure shows that there is a discrete jump in defects per

vehicle right after the Model change. Defects increase by about 2 SD on average right after

the Model change, and start to gradually come back down the next day, reverting back to the

pre-shock level after about three-four weeks.16 The figure also shows that daily DPV does

not exhibit any significant pre-trend in the period up until the exact day of the Model change.

14The level of observation in Table A3 is a day and the sample size is 567 because there are 7 Model changes
and for each event we choose a bandwidth of 40 days around the event, so 81 days in total for each event.

15For each model, the factory makes several different trim levels. Higher level trims usually see a higher
share of new parts to keep up with evolving tastes of customers willing to pay for luxury features. The share
of production devoted to each trim can vary based on orders.

16Appendix Table A4 confirms the results in Figure 1 by reporting that Model changes lead to an increase
in DPV of about 0.75 SD in the first four weeks after the shock, with the effect coming down to zero after
that. This pattern holds, although point estimates are larger, when we restrict attention to the period 2017
to 2019 coinciding with the working group composition database. Appendix Table A5 confirms this.
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This is consistent with the intuition shared by factory management that which specific parts

and processes will face problems causing defects and stoppages is hard or even impossible to

predict. As such, this pattern also confirms that any anticipation effects are not first order,

thus validating the identification assumptions.

Figure 1: Event Study of Model Changes on Productivity

Note: Figure 1 shows the effect of Model changes on DPV in a time window running from 40 days before the event to 40 days
after the event. DPV is computed as number of defects per 100 vehicles, and is standardized using the mean and standard
deviation of the full sample. We control for month, year, and shift fixed effects. We also control for a linear function of distance
to the Model change and to all other Model and Volume changes and a linear time trend. Standard errors are clustered by
distance to the event-shift level. 95% confidence intervals are reported. Number of observations: 2 shifts x 81 days x 7 events.

Figure 2 presents the same event studies, but with the sample split between Model changes

involving high (above median) and low share of new parts. The initial spike in DPV is

much larger (roughly 5 SDs in magnitude) and the subsequent decay slower (DPV remains

significantly elevated for more than 6 weeks) for changes involving the larger shares of new

parts. This heterogeneity analysis lends strong support to the interpretation that the spike

in DPV following model changes is driven by the novelty of many parts and corresponding

processes.
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Figure 2: Event Study of Model Changes on Productivity by Share of New Parts

(a) High Share of New Parts (b) Low Share of New Parts

Note: Figure 2 shows the effect of Model changes on DPV in a time window running from 40 days before the event to 40 days
after the event split between changes with high share of new parts (above the median) and changes with low share of new parts
(below the median). DPV is computed as number of defects per 100 vehicles, and is standardized using the mean and standard
deviation of the full sample. We control for month, year, and shift fixed effects. We also control for a linear function of distance
to the Model change and to all other Model and Volume changes and a linear time trend. Standard errors are clustered by
distance to the event-shift level. 95% confidence intervals are reported. Number of observations for Panel (a): 2 shifts x 81 days
x 3 events. Number of observations for Panel (b): 2 shifts x 81 days x 4 events.

The results in Figure 1 and 2 show that there are real negative productivity implications

of the introduction of new model variants as a result of product quality upgrading. At the

same time, the plant is able to bring these back down fairly quickly on average. Despite the

temporary nature of the rise in DPV, the costs to the firm are substantial and unrecoverable.

Appendix Figure A2 plots the coefficients from a Distributed Lag Regression model in which

the number of cars produced each day is regressed on a dummy for whether the factory

experienced DPV 1 SD above its mean for that day as well as 9 daily lags. We see that such

a spike in DPV reduces output the same day by roughly 50 cars and a total of nearly 80 cars

(or 20% from the sample mean of cars of 413) over the 10 day period, with no sign of any of

that lost production being recovered. Note that in Figure 1 DPV stays elevated by 1 SD

or more for more than a week following a Model change on average; and by more than six

weeks in Figure 2 for Model changes with a high share of new parts.

4.1.3 Knowledge Responses to Product Cycles

We first investigate how the average stock of knowledge, as measured by the cumulative

number of completed courses and hours of training for the average worker in the working group,

changes after a Model change. Figure 3 reports the results of an event study specification

following equation 3 with the average number of cumulative completed courses per worker

as dependent variable. The figure shows that in response to the Model changes, the firm
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increases the stock of knowledge in each working group to deal with the more frequent arrival

of more complex problems. Note that in Figure 3, the impacts persist over time — more

than seven weeks following a Model change. The point estimates in Appendix Table A6 show

that the stock of knowledge in terms of cumulative completed courses goes up by 3% and

in total hours of training by 6%, such that a working group will accrue roughly seven more

completed courses or 60 more hours of training across its 20 workers.

Figure 3: Event Study of Model Changes on Stock of Knowledge in Working Groups

Note: Figure 3 shows the effect of Model changes on the average completed training programs within working groups in a time
window running from 8 weeks before the event to 8 weeks after the event (where the week of the Model change is labelled as week
0 on the x-axis). We control for month, year, and group fixed effects. We also control for a linear function of distance to the
Model change and to all other Model and Volume changes and a linear time trend. Standard errors are clustered at week-working
group level. 95% confidence intervals are reported. Number of observations: 220 working groups x 16 weeks x 2 events.

Figure 4 shows that the incremental training investments – in terms of both number of

courses taken by workers and number of employees trained – are concentrated primarily

among FL workers (in fact upper FL on the margin of promotion to ML as seen in the more

disaggregated results in Appendix Figure A6, panels (a) and (c)), with magnitudes consistent

with roughly 4-6 FL workers each completing the additional course they need to reach ML

level skill and the remaining 1-3 courses spread across the other workers in the group. Figure

A6 in the Appendix also presents this same result, but restricting attention to just courses

covering problem-solving and communication content (panels (b) and (d)). The near identical

pattern and similar order of magnitude in these results confirm that training investments in

these communication and problem-solving skills are primarily driving the knowledge results.
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Figure 4: Impact of Model Changes on Incremental Knowledge Provision

(a) Num. Courses Taken, 0-3 weeks (b) Num. Courses Taken, 4-7 weeks

(c) Num. Employees Trained, 0-3 weeks (d) Num. Employees Trained, 4-7 weeks

Figures 4a and 4b show the effect of Model changes on the average number of courses taken by workers by layer at 0-3 weeks
and 4-7 weeks post Model change, respectively. Figures 4c and 4d show the effect of Model changes on the number of employees
trained by layer at 0-3 weeks and 4-7 weeks post Model change, respectively. For more details on the definition of the layers see
Table 1. Each coefficient is estimated from a separate regression. We control for month, year, and group fixed effects. We also
control for a linear function of distance to the Model change and to all other Model and Volume changes. Standard errors are
clustered by distance to Model change and working group. 95% confidence intervals are presented in the figure. Number of
observations: 220 working groups x 16 weeks x 2 events.

4.1.4 Organizational Responses to Product Cycles

Next, we study which organizational responses to the Model changes the plant puts in place

and how these enable the firm to bring back down the level of defects and increase productivity.

Appendix Table A7 reports results of regressions like equation 4 at the shift-week level, with

various outcome variables related to employment. We find no evidence that Model changes

lead to a change in the number of employees in the Assembly sector, nor in the number of

hires or separations, in the eight weeks after the event: all coefficients are small in magnitude
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relative to the mean and far from being significant. Appendix Table A8 confirms also that

the number of working groups and the size of the average group are unaffected by Model

changes. This indicates any organizational adjustments we find next in response to Model

changes must be taking place as a result of the reallocation of existing workers across layers,

rather than by increasing or downsizing the workforce. This result is sensible in that the

total number of cars that need to be produced has not changed.

Now, to check if indeed the firm is reallocating existing workers, in Figure 5 we study

the impact of the Model changes on the shape of the working groups. We do so by running

a series of regressions like equation 4 with as dependent variables shares of workers in the

working group by layer, in the four weeks (Panel (a)) and eight weeks (Panel (b)) after the

Model change. This figure shows a recomposition of working groups with a reduction in

upper-FL layers in exchange for an increase in the share of ML and S layer workers. Appendix

Figure A8 shows a more disaggregated version of Figure 5, confirming that the recomposition

is mainly driven by upper FL workers being upskilled and promoted to higher level positions.

These results are consistent with Figures 4 and A6, as promotions in the plant are associated

with receiving additional training.

Figure 5: Impact of Model Changes on Working Group Structure and Knowledge Hierarchies

(a) Share of Workers by Layer, 0-3 weeks (b) Share of Workers by Layer, 4-7 weeks

Note: Figures 5a and 5b show the effect of Model changes on the share of workers in the working group by layer at 0-3 weeks
and 4-7 weeks post Model change, respectively. For more details on the definition of the layers see Table 1. Each coefficient is
estimated from a separate regression. We control for month, year, and group fixed effects. We also control for a linear function
of distance to the Model change and to all other Model and Volume changes. Standard errors are clustered by distance to Model
change and working group. 95% confidence intervals are presented in the figure. Number of observations: 220 working groups x
16 weeks x 2 events.

Figures 5 and A8 show that working groups are becoming flatter with less distinct knowl-

edge layers, and more rectangular in shape. These results are confirmed in the corresponding

regression discontinuity in time estimates reported in Table 4: column 1 shows a negative
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and significant effect of about 0.7 layers in the first four weeks after the shock, corresponding

to a 10% decrease from the mean number of layers across working groups. The negative

effect on layers means that the plant is reducing the number of separate skill levels within

working groups after a Model change. Column 2 shows that the ratio of FL to ML workers

also decreases by 10%, while Column 3 shows that the ratio of FL to ML and S decreases by

12%. That is, the span of control of ML and S workers (or number of FL workers from which

each fields problems) is going down.17

Table 4: Impact of Model Changes on Working Group Structure

(1) (2) (3)
Num. Layers FL/ML FL/(ML+S)

0 to 3 weeks -0.666*** -0.552*** -0.448***
(0.124) (0.117) (0.085)

4 to 7 weeks -0.285 -0.346* -0.319**
(0.190) (0.183) (0.130)

Observations 7,040 7,040 7,040
Obs. Level Group-Week Group-Week Group-Week
Mean 6.373 5.026 3.753

Note: Standard errors clustered by distance to event and working group. Number of observations: 220 working groups x 16
weeks x 2 events. Number of Layers is defined as the number of separate positions present in a working group. FL/ML is the
ratio between Num. of Front-Line workers and Mid-Line workers. FL/(ML+S) is the ratio between Num. of Front-Line workers
and Mid-Line workers plus Superiors. We use as controls month, year and group fixed effects. We also control for a linear
function of distance to the Model change and to all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

Finally, given which workers are being trained and the content covered in those trainings,

Table 5 explicitly looks for effects on problem-solving activity. Indeed all members, at all

layers, of the working group are solving more problems, consistent with both the removal of

a layer and the upskilling of low-level FLs to upper level FLs and MLs with more problem-

solving skills. We also see that per employee, the effects are mainly driven by FLs and MLs;

though consistent with more complex problems arising after a Model change, we see that each

17Figure A7 reports the estimation results of equation 2 with the number of layers per working group
(averaged at the weekly level) as the dependent variable. We see that Model changes result in a sudden
decrease in the number of layers in the weeks immediately following the event. More precisely, the number
of layers decreases on average by about one layer, and this effect is stable and significant in the first three
weeks after the shock, after which the number of layers reverts back to pre-shock levels. The dynamics of the
impacts show a remarkable similarity to Figure 1 in that the effect on the number of layers dissipates after
about four weeks since the Model change. Note that though the working groups start to back-fill to some
degree the layer that was removed, the rectangular shape persists even 2 months after the model change (as
shown in Panel (b) of Figure 5 and in columns 2 and 3 of Table 4), consistent with working groups having a
permanently higher stock of knowledge.
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S worker is indeed fielding more problems than before. Note that both Table 5 and Figure 5

show that though the effect on number of layers is short-lived (as seen in Appendix Figure

A7), the effects on working group structure and span of control of complex problem-solvers

(i.e., the more rectangular shape of groups) is persistent.

Table 5: Impact of Model Changes on Problem-Solving Activity by Layer

(1) (2) (3) (4)
All FL ML S

Panel A: Number of reports

0 to 3 weeks 0.735*** 0.607*** 0.120*** 0.00777
(0.148) (0.125) (0.0301) (0.00524)

4 to 7 weeks 2.326*** 1.932*** 0.373*** 0.0213**
(0.279) (0.238) (0.0544) (0.00846)

Mean 0.826 0.661 0.159 0.006

Panel B: Share of reports per employee

0 to 3 weeks 0.0935*** 0.0945*** 0.119*** 0.0241*
(0.0152) (0.0158) (0.0242) (0.0141)

4 to 7 weeks 0.231*** 0.239*** 0.278*** 0.0537***
(0.0250) (0.0264) (0.0376) (0.0205)

Mean 0.072 0.072 0.096 0.014
Observations 3,520 3,520 3,520 3,520
Obs. Level Group-Week Group-Week Group-Week Group-Week

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 16 weeks x 2 events. We
control for month, year, and shift fixed effects. We also control for a linear function of distance to the Model change and to all
other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

In sum, the plant is increasing the overall stock of human capital of working groups,

by upskilling FL workers in problem solving. Roughly 4-6 FL workers are completing the

additional course they need to reach ML level skill (Figure 4). The plant shifts working

group composition away from upper-FL layers and towards ML and S level positions (Figure

5). In doing so, the plant is compressing the hierarchy and reducing the distance, in terms

of knowledge layers, between workers farther up the hierarchy, who have been trained to

possess the necessary knowledge to solve complex problems, and front-line workers working

on physical production, who are coming against new problems as a result of the introduction
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of new parts. As described in Section 2, training focuses primarily on communication and

problem solving, especially for workers farther up the hierarchy. These results then indicate

that through such training provision, the firm increases the ability of upper level workers to

help front-line workers solve the new complex problems they come up against, but the span

of control of each of these complex problem-solvers must be reduced to compensate such that

the working groups become more rectangular in shape.

These results are notable in that they show how the firm combines both in-house training

and changes in organizational structure to adapt to product quality upgrading. Our granular

data allows us to document the surprising flexibility of the organization and to uncover a

substantial and immediate response to the introduction of new models, which would largely

be missed with less granular data aggregated at the yearly level, for example.

These results highlight how an increase in the complexity of the problems that need

to be solved can lead to a compression of the knowledge hierarchy through a reduction

in organizational layers. This is a novel result, which stands in contrast to the literature

studying how the hierarchical structure of firms changes with an expansion of production. As

we will discuss in more detail in the next section, this literature tends to find that as firms

grow larger and there is a larger number of problems to be solved, the number of knowledge

layers increases, as this allows groups to focus the scarce time of skilled managers only on

the most complex problems (Caliendo et al., 2020, 2015; Friedrich, 2022). Our novel data

allows us to highlight instead organizational responses to an increase in the complexity of

what needs to be produced, while keeping total quantity produced constant. We show how

the organizational response is very different when the complexity of production increases,

but quantity produced does not change.

In the next subsection, we exploit discrete increases in the volume of production to show

that when production expands but the complexity of problems does not change, this leads

to an increase in overall employment and the number of layers in each working group as

well as an intensifying of the pyramidal shape. Thus, we can replicate the finding in the

literature regarding organizational responses to the expansion of production, but also add

novel and complementary empirical findings for stock of knowledge and span of control, both

core to the intuition of models of knowledge hierarchies (Caliendo and Rossi-Hansberg, 2012;

Garicano, 2000). In the final section, we then develop a model which extends these classic

models of hierarchies to help reconcile why the number of layer decreases with Model changes

but increases with Volume changes.

29



4.2 Contrasting Product Cycles with Volume Changes

We now contrast the organizational response to product quality upgrading documented in

the previous subsection with the response of the firm to sudden and sharp increases in the

volume of cars that need to be produced. In short, we find that while Volume changes lead

to a quantitatively similar spike in the incidence of defects per vehicle, the organizational

response is very different: the plant hires more entry-level workers and adds more layers to

working groups, so that the distance – in terms of knowledge layers – between front-line

workers and supervisors farther up the hierarchy increases, the span of control of complex

problem-solvers increases, and as a result the average skill level in the firm decreases. These

results for volume changes are in line with the literature on knowledge hierarchies (Caliendo

et al., 2020, 2015; Friedrich, 2022), which tends to find that as firms expand production, new

layers are added to the hierarchy, because the higher volumes allow the firm to better focus

the talent of highly skilled managers on solving only the more complex problems. However,

the analysis of worker-specific stocks of knowledge and problem-solving activities are, to our

knowledge, novel to the literature.

We first confirm in Table A9 that Volume changes result in a sudden and sizeable increase

in the planned number of cars to be produced and, consequently, in the number of parts

that have to be assembled. The total number of cars planned per day jumps up by about

9% and the number of parts increases by 7% after the Volume change; and these effects on

production are long-lasting. Since by definition the model produced on either side of Volume

changes does not change, the types of parts that have to be assembled are the same as before.

That is, the share of new parts is consistently 0 through this window so we do not analyze

this outcome for Volume changes.

The change in volume leads to a sudden and large increase in defects per vehicle, as shown

in Figure 6. DPV shoots up by about 3 SD on average in the immediate aftermath of the

change, and then comes down to pre-shock levels in about three weeks on average.18 The

similarity with Figure 1 is remarkable: both Volume and Model changes lead to a similar

short-term reduction in productivity.19 Appendix Figure A9 shows that the initial spike in

DPV is fairly similar, but the length of time over which DPV remains elevated is longer for

Volume changes for which the factory hires more new workers. This pattern of heterogeneity

supports the interpretation that the rise in DPV following Volume changes is due to new

workers and new groups making mistakes. That is, the spike in DPV after Volume changes

still derives from novelty, but the parts and processes are new to the new workers and groups,

18This pattern holds, although less precise, when we restrict attention to the period 2017 to 2019 coinciding
with the working group composition database. Appendix Table A11 confirm this.

19Appendix Table A10 shows the corresponding discontinuity in time estimates.
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rather than being new to the model.

Figure 6: Event Study of Volume Changes on Productivity

Note: Figure 6 shows the effect of Volume changes on DPV in a time window running from 40 days before the event to 40 days
after the event. DPV is computed as number of defects per 100 vehicles, and is standardized using the mean and standard
deviation of the full sample. We control for month, year, and shift fixed effects. We also control for a linear function of distance
to the Volume change and to all other Volume and Model changes and a time linear-trend. Standard errors are clustered by
distance to the event-shift level. 95% confidence intervals are reported. Number of observations: 2 shifts x 81 days x 5 events.

However, the organizational response of the firm to the increase in the volume of production

is very different. Figure 7 reports the results of an event study specification following equation

3 with the stock of knowledge in the working group as measured by the average number of

cumulative completed courses per worker as the outcome. The figure shows that in response

to the Volume changes, the average stock of knowledge in each working group decreases

immediately and persistently.20 We next ask how the decrease in the average knowledge

is generated. Table 6 shows that as a response to Volume changes the firm hires about 24

additional workers per shift-week in the first four weeks after the Volume change (column 2)

while separations do not increase significantly (column 3). The result is that overall shift-level

employment increases by about 80 workers over the two months following the Volume change,

or a 7.5% increase over a mean of about 1,100 workers per shift (column 1).21 This hiring is

20Appendix Table A12 reports the corresponding regression discontinuity in time results and shows that
Volume changes lead to a persistent reduction in average completed training programs of about 7% and a
reduction in average cumulative training hours of about 11% after eight weeks.

21Appendix Figure A12 reports the corresponding event studies on employment, showing that Volume
changes lead to a persistent increase in employment over at least an eight-week period. Appendix Table A13
shows that the increase in employment is associated with an increase in the number of working groups in the
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concentrated among front-line layers with a low level of skill. Column 1 of Table 7 confirms

that the way this stock of knowledge reduction is being achieved is by adding layers and

increasing the relative size of the base of the pyramid and consequently the span of control of

complex problem-solvers (column 2 and 3 of Table 7). That is, as a result of Volume changes,

the firm moves to a more pronounced pyramidal structure of working groups with a thicker

base and a larger number of separate knowledge layers, resulting in an overall reduction in

the average level of knowledge of working groups.22

Figure 7: Event Study of Volume Changes on Stock of Knowledge in Working Groups

Note: Figure 7 shows the effect of Volume changes on the average completed training programs within working groups in a time
window running from 8 weeks before the event to 8 weeks after the event (where the week of the Model change is labelled as
week 0 on the x-axis). We control for month, year, and group fixed effects. We also control for a linear function of distance
to the Volume change and to all other Model and Volume changes and a linear time trend. Standard errors are clustered at
week-working group level. 95% confidence intervals are reported. Number of observations: 220 working groups x 16 weeks x 2
events.

Assembly sector, but not with a significant increase in the size of pre-existing working groups. In addition,
Appendix Table A14 shows that despite the increase in employment, Volume changes still lead to an increase
in the number of cars and number of parts per employee as well as per working group. This then justifies
why we see an increase in the number of layers within working groups: the firm reorganizes production to
deal with the increase in the volume of work per employee, achieving greater economies of scale. In line
with this, we still find a positive and persistent effect on the number of layers when restricting the sample to
pre-existing working groups only (Appendix Figure A11).

22Appendix Figure A10 shows that volume changes lead to a sudden increase in the number of layers
within working groups, which go up by just under 1 layer (from a mean of about 5 layers). This increase
is persistent for at least 8 weeks after the volume change, which is consistent with the persistent increase
in the volume that needs to be produced, as shown in Table A9. Appendix Figure A13 reports impacts of
Volume changes on the share of workers by layer, confirming that the share of FL workers in working groups
increases, so that groups become heavier in the lower part of the pyramid.
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Table 6: Impact of Volume Changes on Employment

(1) (2) (3)
Employment Hires Separations

0 to 3 weeks 29.46 24.08** 1.67
(34.32) (9.63) (1.50)

4 to 7 weeks 82.08*** -0.58 0.25
(28.60) (2.48) (0.36)

Observations 64 64 64
Obs. Level Shift-Week Shift-Week Shift-Week
Mean 1094 10 1

Note: Standard errors clustered by distance to Volume change and shift. Number of observations: 2 shifts x 16 weeks x 2 events.
We use as controls month, year, and shift fixed effects. We control for a linear function of distance to Volume changes and
distances to the other Volume and Model changes. * p<0.1, ** p<0.05, *** p<0.01

Table 7: Impact of Volume Changes on Working Group Structure

(1) (2) (3)
Num. Layers FL/ML FL/(ML+S)

0 to 3 weeks 0.850*** 0.610*** 0.453***
(0.098) (0.094) (0.067)

4 to 7 weeks 0.706*** 0.498*** 0.398***
(0.117) (0.116) (0.082)

Observations 7,040 7,040 7,040
Obs. Level Group-Week Group-Week Group-Week
Mean 5.284 4.158 3.094

Note: Standard errors clustered by distance to event and working group. Number of observations: 220 working groups x 16
weeks x 2 events. Number of Layers is defined as the number of separate positions present in a working group. FL/ML is the
ratio between Num. of Front-Line workers and Mid-Line workers. FL/(ML+S) is the ratio between Num. of Front-Line workers
and Mid-Line workers plus Superiors. We use as controls month, year and group fixed effects. We also control for a linear
function of distance to the Volume change and to all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

Finally, Table 8 shows that given that there are now more FLs to solve the higher number

of simple problems corresponding to an increase in volume, each FL and each ML is solving

fewer problems. This result reflects both a gain in economies of scale by way of an increase

in the span of control of MLs and Ss and perhaps some learning in the cumulative quantity

produced as well (Levitt et al., 2013). This comparison again highlights how different and

unique are organizational responses to product quality upgrading vis a vis responses to
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Volume changes, which have been extensively studied in the literature (Caliendo et al., 2020,

2015; Friedrich, 2022).

Table 8: Impact of Volume Changes on Problem-Solving Activity by Layer

(1) (2) (3) (4)
All FL ML S

Panel A: Number of reports

0 to 3 weeks -1.964*** -1.630*** -0.321*** -0.0123*
(0.220) (0.191) (0.0400) (0.00713)

4 to 7 weeks -2.064*** -1.677*** -0.374*** -0.0125
(0.378) (0.326) (0.0740) (0.0116)

Mean 0.705 0.588 0.111 0.006

Panel B: Share of reports per employee

0 to 3 weeks -0.174*** -0.181*** -0.210*** -0.0286*
(0.0172) (0.0188) (0.0247) (0.0158)

4 to 7 weeks -0.195*** -0.202*** -0.252*** -0.0319
(0.0300) (0.0319) (0.0477) (0.0259)

Mean 0.070 0.073 0.082 0.016
Observations 3,520 3,520 3,520 3,520
Obs. Level Group-Week Group-Week Group-Week Group-Week

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 16 weeks x 2 events. We
control for month, year, and shift fixed effects. We also control for a linear function of distance to the Volume change and to all
other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

5 Interpretation

The findings in Section 4 show that there is a discrete jump in defects per vehicle right after

the Model or Volume change. However, we find that a) when workers have to deal with new

tasks, the firm trains existing workers and compresses the hierarchy, and b) Volume changes

lead to a different organizational response: the plant hires more entry-level workers and adds

more layers to working groups. In this section, we discuss how our results can be reconciled

with the literature on hierarchies in organizations (Caliendo et al., 2020, 2015; Caliendo and

Rossi-Hansberg, 2012).
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5.1 Interpreting Our Results Through Existing Models

We consider as benchmark a simplified version of the model in Caliendo and Rossi-Hansberg

(2012), which draws in turn from Garicano (2000).23 We briefly summarize the key elements

of the model, and then discuss whether this model can explain our pattern of empirical

results.

In this model, organizations are composed of two types of agents: workers and managers.

To generate output, workers in the organization need to solve a problem drawn from a

cumulative distribution F , with decreasing density (f ′ < 0). Solving problems requires

knowledge. A realization z of a problem implies that in order to solve that problem, the

worker needs to have acquired a set of knowledge that includes z as an element. If the worker

solves the problem, the production possibility becomes A units of output.

If the worker cannot solve the problem, she asks a manager one layer above for a solution.

Then, the manager spends h units of her time listening to the worker’s problem (i.e., h is

the cost of communication) and solves the problem if her set of knowledge includes z. If the

manager cannot solve the problem, she can communicate it to another manager one layer

above her. This process continues until the problem is solved or the problem reaches the only

agent in the highest layer of the organization, namely the entrepreneur. To achieve a set of

knowledge [0, z] for a given agent (which means that the agent can solve any problem within

the interval [0, z]), the firm must pay wcz, that is, the cost of knowledge is wc per unit of

knowledge, where w is the wage and c the training cost.

For simplicity we assume that problems are drawn from the exponential distribution; that

is, F (z) = 1− e−λz for a given λ > 0. Note that as f(z) = λe−λz is strictly decreasing in z,

agents at the bottom of the organization learn the most common problems, while agents in

higher layers learn rarer problems. Also note that as λ decreases, the frequency of complex

problems increases.

Given a production level q, a wage w and a training cost c, each firm solves an organizational

problem that involves choosing the optimal number of layers L, the optimal amount of

workers/managers at each layer, and the amount of knowledge these workers and managers

acquire. The firm does so by solving two minimization problems, given q, w and c:

1. (Layers problem) It chooses the optimal number of layers L in order to minimize the

cost of producing q units of output while paying a wage w to each worker and manager.

23We note that there is another class of models of the organization of production based on the intuition of
delegating responsibilities from the top down rather than passing problems from the bottom up (see, e.g.,
Alonso et al. (2008)). Given the focus on problem-solving in the training content in this setting and the
emphasis on recording and encouraging problem-solving effort on the part of workers in this firm and industry
context, we believe these models of knowledge hierarchies describing the distribution of problem-solving skills
across the hierarchy are particularly appropriate for analyzing the changes we study in this paper.
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2. (Workers and Knowledge problem) Given the number of layers L, it chooses the optimal

amount of workers/managers at each layer and the optimal amount of knowledge they

acquire to produce q units of output, given a training cost, c.24

Using this general framework, we study how the organization of the firm changes endoge-

nously in response to Model and Volume changes. We begin by considering Volume changes,

as this maps closely to related studies that consider how the organization of the firm changes

in response to an increase in the quantity produced. The model predicts that an increase in

the volume produced should result in an increase in the number of layers and in the number

of employees per layer, which is exactly what we see in the data.

The intuition is that when production increases, the number of problems increases too,

and so each worker solves a smaller fraction of the problems. As a response, the firm can

either: (i) hire new workers and increase the number of layers, so that new managers deal

with rarer problems, or (ii) increase the number of employees and knowledge in all layers

without an increase in the number of layers. Note that since the firm needs to produce more,

the model predicts that new workers will be hired regardless of the impact on the hierarchical

structure. Our empirical evidence is consistent with (i) in that we document a sharp and

sustained increase in the number of layers and employees as a response to volume changes.

Therefore, the model in Caliendo and Rossi-Hansberg (2012) can reconcile the impact of

Volume changes that we document empirically.

Turning to Model changes, we note that this is not something that the literature on

hierarchies in organizations has explored before. Nevertheless, we start by discussing whether

the model in Caliendo and Rossi-Hansberg (2012) can reconcile the results on Model changes

that we document. As shown before, every time a new model is introduced, the complexity

of the problems increases as the share of new parts in the car increases. We follow Garicano

(2000) in modeling this as a reduction in λ. A lower λ decreases the production level qL at

which the firm would find it optimal to move from L to L + 1 layers, thus increasing the

number of layers and workers per layer for a fixed level of production.

Intuitively, if problems become more complex, given a stock of knowledge, each worker

solves a smaller fraction of the problems (see Proposition 1 in Appendix B)). Thus, to keep

production constant, there are two options: (i) increase the number of layers and workers to

24We note that in deciding the number of layers, how many workers should be in each layer, and how much
knowledge they should acquire the firm effectively solves a top down delegation problem in this model as well.
We therefore do not see this knowledge hierarchy class of models as necessarily distinct in intuition from the
delegation class of models like that in Alonso et al. (2008). Rather, we note practically that both assignment
of responsibility and acquisition of skill must occur for gains from specialization to be realized. Indeed, if
a manager is given the responsibility to solve a problem or complete a task without the necessary skill, or
conversely acquires the skill but does not have the authority to use the skill to complete a task or solve a
problem, then the organization cannot benefit from the presence of this manager in the hierarchy.
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deal with the more complex problems, or (ii) increase the number of employees and knowledge

in all layers, without an increase in the number of layers. That is, the model predicts that

Model changes should result in an increase in the number of workers and either no impact or

a positive impact on the number of layers (depending on the size of the shock). We instead

find no impact on the number of workers and a negative impact on the number of layers. The

model of Caliendo and Rossi-Hansberg (2012) therefore cannot reconcile the impact of Model

changes that we document.25

Next, we discuss a possible model extension that could help reconcile our results on Model

changes, and present supporting empirical evidence to motivate the extension.

5.2 Extending Existing Models: The Role of Training

Training plays a key role in determining the equilibrium levels of knowledge at different

levels of the hierarchy in our setting and in many similar manufacturing settings. We know

from anecdotal evidence that every time the complexity of the routine tasks increases due

to a Model change, the partner firm improves the training programs (in terms of both

content and trainers) to train workers more efficiently in problem solving and managerial

skills. We interpret this as an increase in the productivity of training, which in the model

would correspond to a reduction in the training cost c. One advance we make to the current

state of the theory that is relevant for our setting is to incorporate the role of training and

endogenizing the equilibrium level of training the firm offers at different levels of the hierarchy.

We first explore empirically how training investments by the firm differ for Volume and

Model changes, to substantiate the claim that the firm increases the productivity of training

in response to Model changes. Table 9 shows that the firm increases substantially the number

of different courses provided in house and the number of trainers after a new model is

introduced (Panel A). These results are consistent with the anecdotal evidence provided

by the partner company that the firm makes investments to improve the in house training

academy. It also again highlights training as an important margin that enables the firm to

adapt to Model changes and resolve defects quickly, consistent with the empirical evidence

documented in Section 4. In contrast, we do not see any impact when the firm changes the

scale of production (Panel B). This is expected as the complexity of the problems does not

25For simplicity, in this section, we consider a static model. However, a dynamic version of the model of
Caliendo and Rossi-Hansberg (2012) where workers learn by working on new tasks would still not reconcile
the empirical results presented in Section 4: a Model change would still lead to a (temporary) increase in
either the number of workers or the number of layers. Then, as workers learn the new tasks, the stock of
knowledge would increase in each layer, leading to a subsequent reduction in the number of layers or the
number of workers. Instead, we document an immediate decrease in the number of layers after the Model
change, with no impact on the number of workers.
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change with Volume changes.

Table 9: Impact of Model and Volume Changes on Training Investments

(1) (2)
Number of Courses Provided Number of Trainers

Panel A: Model Changes

0 to 3 weeks 2.743*** 3.173***
(0.443) (0.668)

4 to 7 weeks 4.311*** 5.345***
(1.123) (1.469)

Observations 112 112
Obs. Level Weekly Weekly
Mean 6.255 8.055

Panel B: Volume Changes

0 to 3 weeks -1.588 -2.213
(0.943) (1.668)

4 to 7 weeks -0.466 -0.607
(1.535) (2.169)

Observations 80 80
Obs. Level Weekly Weekly
Mean 6.100 8.175

Note: Standard errors clustered by distance to event. Number of Courses Provided is the number of courses provided each week
and Number of Trainers is the number of trainers teaching each week. We use as controls month and year fixed effects. We also
control for a linear function of distance to the event (i.e., Model or Volume change) and to all other events in the data. Panel A
shows the effect for Model changes and Panel B shows the effect for Volume changes. Number of observations in Panel A: 7
events x 16 weeks. Number of observations in Panel B: 5 events x 16 weeks. * p<0.1, ** p<0.05, *** p<0.01

To reconcile the above results with the previous theoretical literature we start by asking:

What are the admissible ratios ∆c : ∆λ that imply that the firm does not optimally increase

the number of layers when the complexity of tasks increases? In Appendix B, we show that

the partial derivatives (∂qL/∂λ)|p⃗ > 0 and (∂qL/∂c)|p⃗ < 0 quantify the opposing effects on

the intersecting point qL (i.e., the quantity q at which the firm finds it optimal to switch

from L to L+ 1 layers) of reducing λ or c. The former constitutes the negative impact of the

firm having to face more complex problems – which pushes towards an increase in number of

layers for a given quantity of production – while the latter is the favorable scenario where the

firm can train its workers more efficiently – which pushes towards a reduction in the number
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of layers. In that sense, Proposition 2 in Appendix B provides the minimum investment in

reducing training costs c required to balance the effect of problem complexity.

Motivated by the observations discussed above, but being mindful that firms usually can

not freely change the cost of training c, in Appendix B we develop a variation of the model in

Caliendo and Rossi-Hansberg (2012) where the firm can endogenously invest in reducing the

training cost c but this comes at a fee, or penalty P.26 Intuitively, this extension captures

the idea that when the complexity of production increases, the firm may find it optimal to

invest in its training programs to improve the productivity of training, consistent with the

evidence in Table 9.

In this version of the model with endogenous training cost, for each c the firm has to

establish the optimal distribution of knowledge {zlL}Ll=0, and then it selects the optimal

training cost c, given the fee P. Proposition 3 in the Appendix shows that in this version

of the model there is a neighborhood of λ where an increase in complexity (i.e., a marginal

reduction in λ) compresses knowledge layers in the organization.

In Appendix B3, we provide an example to illustrate the results presented in Proposition

3. Our simulations show that there is a set of production levels where the firm reduces the

amount of layers every time the complexity of the tasks increases (e.g., a Model change),

increasing the amount of knowledge within each layer.27 Note that this is not the case for

Volume changes as the number of layers generally increases for large volume increases, even

when we allow the option to invest in training by reducing the training cost c (see Appendix

Figure B2).

Intuitively, there are dynamic elements and adjustment costs at play here. In the short

run, firms are confronted with these changes in complexity arising from Model changes that

require new knowledge. However, it is inefficient for the firm to hire new workers who would

require even more training to deal with this rise in complexity, especially given that quantity

is fixed in the short run. Instead, the firm can first quickly retrain existing workers and

reorganize teams to deal with the higher complexity at the current quantity produced.

To make this intuition clear, rather than propose an explicitly dynamic framework, we

differentiate fixed factors in the short run and long run adjustment. With some abuse of

notation (since L is not continuous), we see:

dq

dλ
|q=q̄ = 0 =

∂q

∂z

∂z

∂λ
+

∂q

∂L

∂L

∂λ
(5)

and hence

26We assume that P is decreasing with respect to c and independent of the production levels q.
27In other cases, the firm operates with the same amount of layers when there is a Model change. Note

that this result depends on the magnitude of the increase in complexity.
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∂q

∂z

∂z

∂λ
= − ∂q

∂L

∂L

∂λ
. (6)

We know q increases in z and L; so equation 6 shows that an increase in training

(knowledge z) to deal with the new problem distribution will go together with a reduction

in the number of layers. After this phase, the firm can choose to expand production in the

longer term if it wants. That is, when there is this adjustment cost to changing quantity,

knowledge (training) and layers are substitutes in short run, but complements in the long

run.

This suggests a cycle of growth for the firm in which the firm adds knowledge with a

relatively flatter and more rectangular hierarchy to allow for product quality upgrading, and

then shifts to a relatively taller and more pyramidal hierarchy with a larger and less skilled

on average workforce when expanding production. If the firm continues to grow, the cycle

starts back at the beginning but with ever an increasing training productivity and size of

the workforce. Indeed in Appendix Figures A14, A15, A3a and A3c, we see that the number

of courses and trainers continues to rise over time, as does the stock of knowledge in and

number and size of working groups, in stages.

This discussion shows that taking into account the “technology of training” and how firms

might endogenously decide to invest in improving it can be important for understanding

organizational responses to the introduction of more complex problems such as those resulting

from product quality upgrading. In considering the role of the training technology, we advance

the recent theoretical literature on knowledge hierarchies, which has mostly considered

organizational responses to changes in quantity produced rather than in the complexity or

quality of what needs to be produced (Caliendo et al., 2020, 2015).

6 Conclusion

Focusing on the automotive sector as a prototypical example of an industry that experiences

frequent product quality upgrading due to product cycles, we study how the stock of

knowledge and organization of the firm change in response. To do so, we combine granular

administrative data on production, employee hierarchies and training provision from an

Argentinian subsidiary plant of a leading global auto manufacturer with event study and

discontinuity-based methods.

We find that demand (planned number of vehicles) and number of total parts do not

change in the short term after a new model is introduced. The main change is a large,

discontinuous increase in new parts. Accordingly, the production of new models necessitates
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dealing with new complex problems. Indeed, we show that defects per vehicle increase

substantially after the production change, most dramatically when new models involve a

higher share of new parts. Defects decrease to their prior level over a period of about 3 weeks

on average, though they remain elevated for more than 8 weeks following more complete

redesigns of models.

We then show that combatting this rise in defects requires an increase in the stock of

knowledge and a change in the shape of working groups: the knowledge hierarchy becomes

flatter and the groups become more rectangular. The firm accomplishes this by training and

promoting lower-level employees to mid and top level positions that specialize in solving the

complex problems arising from the use of new parts and processes in assembly. In doing so,

the firm reduces the distance – in terms of knowledge layers – between front-line workers,

who are dealing with these new tasks, and managers farther up the hierarchy, who have the

necessary knowledge to solve the new complex problems that arise as a result. The firm also

reduces the span of control of complex problem-solvers by decreasing the ratio of frontline

operators to mid and high level managers. Though the hierarchy starts to heighten relatively

soon after defects return to their pre-change level, the more rectangular shape and higher

stock of knowledge persist.

These results for model changes contrast interestingly with the impacts of an increase in

quantity produced (i.e., volume changes). In this case we show the organizational response

is a monotonic, permanent increase in both employment and knowledge layers, consistent

with prior evidence from manufacturing in high-income countries (Caliendo et al., 2020, 2015;

Friedrich, 2022). The pyramidal shape of working groups becomes more pronounced after

volume changes and the stock of knowledge goes down as more lower-skilled workers are hired

at the bottom of the pyramid.

In addition to these novel empirical results on the stock of knowledge and the shape

of working groups, we leverage unique data from the factory’s continuous improvement

system to show that problem-solving activity by all workers at all levels goes down following

volume changes, but up after model changes. The increases in problem-solving activities we

see following model changes at both the lower and mid-levels of the working group reflect

a combination of the results from comparative statics explored by both Garicano (2000)

and Caliendo and Rossi-Hansberg (2012). That is, they show that an increase in problem

complexity and a decrease in the cost of acquiring knowledge move the choice of hierarchical

knowledge layers and span of control of complex problem-solvers in opposite directions.

Motivated by these insights, as well as additional empirical results showing the firm

invests in improving its in-house training programs by adding courses and bringing in new

trainers, we modify the canonical theory to allow the firm to make a costly investment in

41



increasing the efficacy of training. In this sense, training becomes another lever the firm

adjusts alongside the distribution of knowledge across layers. We show that when quantity

is fixed in the short-run, as both our empirical results and anecdotes from the firm’s upper

management confirm, the firm treats investments in training efficacy and the choice of layers

as substitutes, but when quantity can adjust in the long run these levers are complementary.

We believe these insights, however, are not unique to this firm or industry context. The

emphasis on problem-solving skills, processes and systems is ubiquitous across the automobile

manufacturing industry, and indeed makes up the core of the mechanism for organizational

learning presented in Levitt et al. (2013). Furthermore, lean manufacturing and continuous

improvement are regarded as frontier production practices across most manufacturing contexts.

For example, Adhvaryu et al. (2023) study this same system in electronics manufacturing

factories in Thailand; and communication and problem-solving skills of both frontline operators

and production team supervisors have been shown to contribute greatly to productivity in

Indian garment factories (Adhvaryu et al., 2018, 2022, 2019).

We provide what is to our knowledge the first study of the way in which organizational

structure responds to product quality upgrading, as occurs regularly in product cycles. Our

findings show how large suppliers in the “global south” are highly flexible in their internal

organization of labor, and how this allows them to adapt and respond to the ever increasing

complexity of production arising from the frequent and relentless product quality upgrading

necessary to remain competitive in global product markets.
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Online Appendix

A Tables and Figures

Figure A1: Dispersion in Daily Defects per Vehicle (DPV)

Note: Figure A1 plots the distribution of DPV-day observations, pooling across all days in the data.
DPV is a standardized variable with mean 0 and standard deviation 1.
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Figure A2: DPV and Plant-level Productivity Losses

Note: Figure A2 plots the coefficients of a Distributed Lag Model of order 10. We define a High DPV day as a day when DPV
goes over 1 SD above the mean in our sample. We control for a quadratic trend, year and month fixed effects, and first lag
of number of cars produced. The cumulative effect of the High DPV occurrence over the 10 days is -79.799 cars (with robust
standard error 10.157). Confidence Intervals are computed using robust standard errors.
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Figure A3: Average Size of Working Groups, Average Number of Layers and Number of
Working Groups over Time

(a) Average size (b) Average number of layers

(c) Number of working groups

Note: Figure A3a plots the weekly average working group size in our period of analysis. Figure A3b plots
the weekly average number of layers per working group in our period of analysis. Figure A3c plots the
weekly number of working groups in our period of analysis.
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Figure A4: Schematic of Working Group Composition Movement after a Model Change

(a) Baseline (b) Training

(c) Promotion at the top (d) Promotion at the bottom (back-filling)

Figure A4 shows an example of how the working group composition changes after a Model change, illustrating our empirical
results.
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Figure A5: Schematic of Working Group Composition Movement after a Volume Change

6 layers

FL: Production Tasks 

ML: Problem solving, Quality Control

S: Overall supervision and management

(a) Baseline

(b) Hiring and new groups formation

(c) Promotion at the bottom (d) Less knowledge on average

Figure A5 shows an example of how the working group composition changes after a Volume change, illustrating our empirical
results.
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Figure A6: Impact of Model Changes on Avg Num. of Courses and Employees Trained in
All Courses and Problem-Solving and Communication Specific Content (0-3 weeks)

(a) Num. Courses, All courses (b) Num. Courses, Problem-solving

(c) Num. Employees, All courses (d) Num. Employees, Problem-solving

Figures A6a and A6b show the effect of Model changes on the average number of courses taken by workers by layer at 0-3 weeks
post Model change in all courses and courses with problem-solving and communication content, respectively. Figures A6c and
A6d show the effect of Model changes on the number of employees trained by layer at 0-3 weeks post Model change in all courses
and courses with problem-solving and communication content, respectively. For more details on the definition of the layers see
Table 1. Each coefficient is estimated from a separate regression. We control for month, year, and group fixed effects. We also
control for a linear function of distance to the Model change and to all other Model and Volume changes. Standard errors are
clustered by distance to Model change and working group. 95% confidence intervals are presented in the figure. Number of
observations: 220 working groups x 16 weeks x 2 events.

A6



Figure A7: Event Study of Model Changes on Number of Layers

Note: Figure A7 shows the effect of model changes on the number of layers within working groups in a time window running
from 8 weeks before the event to 8 weeks after the event (where the week of the Model change is labelled as week 0 on the
x-axis). Number of layers is defined as the number of separate positions present in a working group. We control for month,
year, and group fixed effects. We also control for a linear function of distance to the Model change and to all other Model and
Volume changes and a linear time trend. Standard errors are clustered at week-working group level. 95% confidence intervals are
reported. Number of observations: 220 working groups x 16 weeks x 2 events.

Figure A8: Impact of Model Changes on Working Group Structure and Knowledge Hierarchies
(Disaggregated)

(a) Share of Workers by Layer, 0-3 weeks (b) Share of Workers by Layer, 4-7 weeks

Figures A8a and A8b show the effect of Model changes on the share of workers in the working group by layer at 0-3 weeks and
4-7 weeks post-shock, respectively. For more details on the definition of the layers see Table 1. Each coefficient is estimated from
a separate regression. We control for month, year, and group fixed effects. We also control for a linear function of distance to
the Model change and to all other Model and Volume changes. Standard errors are clustered by distance to Model change and
working group. 95% confidence intervals are presented in the figure. Number of observations: 220 working groups x 16 weeks x 2
events.
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Figure A9: Event Study of Volume Changes on Productivity by Hiring

(a) High Hiring (b) Low Hiring

Note: Figure A9 shows the effect of Volume changes on DPV in a time window running from 40 days before the event to 40 days
after the event split between changes with high number of employees hired (above the median) and changes with low number of
employees hired (below the median). DPV is computed as number of defects per 100 vehicles, and is standardized using the
mean and standard deviation of the full sample. We control for month, year, and shift fixed effects. We also control for a linear
function of distance to the Model change and to all other Model and Volume changes and a linear time trend. Standard errors
are clustered by distance to the event-shift level. 95% confidence intervals are reported. Number of observations in Panel (a): 2
shifts x 81 days x 2 events. Number of observations in Panel (b): 2 shifts x 81 days x 3 events.

Figure A10: Event Study of Volume Changes on Layers

Note: Figure A10 shows the effect of Volume changes on the number of layers within working groups in a time window running
from 8 weeks before the event to 8 weeks after the event (where the week of the Volume change is labelled as week 0 on the
x-axis). Number of layers is defined as the number of separate positions present in a working group. We control for month, year,
and group fixed effects. We also control for a linear function of distance to the Volume change and to all other Volume and
Model changes and a linear time trend. Standard errors are clustered at week-working group level. 95% confidence intervals are
reported. Number of observations: 220 working groups x 16 weeks x 2 events.
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Figure A11: Event Study of Volume Changes on Layers for Pre-Existing Groups

This Figure shows the effect of volume changes from 8 weeks before the event to 8 weeks after the event on the number of layers,
limiting the sample to pre-existing working groups only. Number of layers is defined as the number of positions in the working
group. Standard errors clustered at weekly-shift level. 95% confidence intervals are presented in the figure. We control for
month, year, and group fixed effects. We also control for a linear function of distance to the Volume change and to all other
Volume and Model changes and a time linear-trend. Number of observations: 167 working groups x 16 weeks x 2 events.
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Figure A12: Event Study of Volume Changes on Employment

Note: Figure A12 shows the effect of volume changes on the number of employees in a time window running from 8 weeks before
the event to 8 weeks after the event (where the week of the Model change is labelled as week 0 on the x-axis). We control for
month, year, and shift fixed effects. We also control for a linear function of distance to the volume change and to all other Model
and Volume changes and a time linear-trend and a time linear-trend. Standard errors are clustered at week-working group level.
95% confidence intervals are reported. Number of observations: 2 shifts x 16 weeks x 2 events.

Figure A13: Impact of Volume Changes on Working Group Structure and Knowledge
Hierarchies

(a) Share of Workers by Layer, 0-3 weeks (b) Share of Workers by Layer, 4-7 weeks

Figures A13a and A13b show the effect of Volume changes on the share of workers in the working group by layer at 0-3 weeks
and 4-7 weeks post-shock, respectively. For more details on the definition of the layers see Table 1. Each coefficient is estimated
from a separate regression. We control for month, year, and group fixed effects. We also control for a linear function of distance
to the Volume change and to all other Model and Volume changes. Standard errors are clustered by distance to Model change
and working group. 95% confidence intervals are presented in the figure. Number of observations: 220 working groups x 16
weeks x 2 events.
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Figure A14: Courses and Teachers over Time

(a) Courses (b) Teachers

Note: Figure A14a plots the weekly number of courses provided during our period of analysis. Figure
A14b plots the weekly number of teachers during our period of analysis.

Figure A15: Average Completed Programs and Average Cumulative Training Hours over
Time

(a) Average Completed Programs (b) Average Cumulative Training Hours

Note: Figure A15a plots the weekly average completed programs per working group in our period of
analysis. Figure A15b plots the weekly average accumulated training hours per working group in our
period of analysis.
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Table A1: Distribution of Reporting of Problem-Solving Activities By Knowledge Layer

Share of total reports Reports per employee

S4 0.002 0.001
S3 0.006 0.003
S2 0.004 0.002
S1 0.003 0.002
ML4 0.006 0.018
ML3 0.050 0.019
ML2 0.078 0.019
ML1 0.062 0.016
Mid FL 0.106 0.018
FL4 0.201 0.017
FL3 0.172 0.014
FL2 0.131 0.015
FL1 0.102 0.012
New FL3 0.043 0.008
New FL2 0.024 0.007
New FL1 0.011 0.007

Note: Table A1 shows the distribution of total reports by layer and the rate of reports per employee by layer for the years 2018
and 2019.

Table A2: Descriptive Statistics on Model and Volume Changes

Model Changes Volume Changes

Mean SD Min Max Mean SD Min Max

Num of Cars 366.55 112.33 170.71 522.40 388.75 92.70 312.70 537.78
Num of Parts 1,421,760.00 834,783.50 1,838.32 2,416,469.00 1,790,505.00 505,012.30 1,425,545.00 2,577,422.00
Num of New Parts 189,047.50 174,787.90 69.96 533,349.20 0 0 0 0
Share of New Parts 0.13 0.11 0.04 0.37 0 0 0 0
Num of Models 1.44 0.74 1.00 3.10 1.26 0.52 1.00 2.19
Num of New Models 1.12 0.10 1.00 1.25 0 0 0 0

Number of Events 7 5

Note: The information presented comes from shift-day level information of production from 2012 to 2019. The Model and
Volume changes information is the average of daily information in the month after the change happens.
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Table A3: Impact of Model Changes on Production

(1) (2) (3)
Total Cars Total Parts (Millions) Share New Parts

0-3 weeks -0.534 -0.084 30.6***
(0.703) (0.175) (2.16)

4-7 weeks -1.162 -0.258 13.5***
(0.875) (0.195) (4.78)

Observations 567 567 567
Obs. Level Day Day Day
Mean 105.386 1.423 0

Note: Standard errors clustered by distance to the Model change. Number of observations: 81 days x 7 Model changes. Total
parts are expressed in millions. Share of new parts is the percentage of new parts introduced in each model change relative to
those used in the previous variant of the model. Car production is reported by the plant at the daily level. We control for month
and year fixed effects as well as a linear function of distance to the Model change and distance to every other Model and Volume
change in the data. * p<0.1, ** p<0.05, *** p<0.01

Table A4: Impact of Model Changes on Productivity

(1)
DPV

0-3 weeks 0.745***
(0.134)

4-7 weeks 0.198
(0.186)

Observations 1,134
Obs. Level Shift-Day
Mean 0.000

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 81 days x 7 events. Productivity
measures are reported by the plant at the shift-day level. DPV is the number of defects per 100 vehicles, and is standardized.
We control for month, year, and shift fixed effects. We also control for a linear function of distance to the Model change and to
all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01
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Table A5: Impact of Model Changes on Productivity during 2017 to 2019

(1)
DPV

0-3 weeks 1.184**
(0.526)

4-7 weeks 0.850
(0.689)

Observations 324
Obs. Level Shift-Day
Mean 0.000

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 81 days x 2 events. Productivity
measures are reported by the plant at the shift-day level. DPV is the number of defects per 100 vehicles, and is standardized.
We control for month, year, and shift fixed effects. We also control for a linear function of distance to the Model change and to
all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

Table A6: Impact of Model Changes on Stock of Knowledge of Working Groups

(1) (2)
Avg. Completed Avg. Cumulative

Programs Training Hours

0-3 weeks 0.334*** 3.077***
(0.103) (0.543)

3-7 weeks 0.399** 3.133***
(0.155) (0.816)

Observations 7,040 7,040
Obs. Level Group-Week Group-Week
Mean 11.488 51.832

Note: Standard errors clustered by distance to event and working group. Number of observations: 220 working groups x 16
weeks x 2 events. Avg. Completed Programs is the average number of training programs received by the employees in each
working group. Avg. Cumulative Training Hours is the average number of training hours received by the employees in each
working group. We use as controls month, year and group fixed effects. We also control for a linear function of distance to the
Model change and to all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01
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Table A7: Impact of Model Changes on Employment

(1) (2) (3)
Employment Hires Separations

0-3 weeks 3.894 -1.172 -0.367
(21.73) (4.855) (0.758)

4-7 weeks 10.85 15.30 0.720
(40.86) (12.46) (1.260)

Observations 64 64 64
Obs. Level Shift-Week Shift-Week Shift-Week
Mean 1175 21 2

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 16 weeks x 2 events. For
more details on the definition of the layers see Table 1. We control for month, year, and shift fixed effects. We also control for a
linear function of distance to the Model change and to all other Model and Volume changes. * p<0.1, ** p<0.05, *** p<0.01

Table A8: Impact of Model Changes on Number of Groups and Group Size

(1) (2)
Num of Groups Group Size

0-3 weeks -0.786 0.039
(1.703) (0.240)

4-7 weeks -0.789 0.105
(2.304) (0.349)

Observations 64 64
Obs. Level Shift-Week Shift-Week
Mean 58 20

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 16 weeks x 2 events. We use
as controls month, year, and shift fixed effects. We control for a linear function of distance to Model change and distances to the
other Model and Volume changes. Number of groups is the number of working groups in each shift. Group size is the average
number of employees in each working group. * p<0.1, ** p<0.05, *** p<0.01
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Table A9: Impact of Volume Changes on Production

(1) (2)
Total Cars Total Parts

0-3 weeks 30.65*** 0.120**
(10.55) (0.047)

4-7 weeks 57.97*** 0.237***
(18.00) (0.079)

Observations 405 405
Obs. Level Day Day
Mean 356.84 1.713

Note: Standard errors clustered by distance to Volume change. Number of observations: 81 days x 5 events. We use as controls
month and year fixed effects. Total Parts in millions. Cars production is reported by the plant at daily level. We control for a
linear function of distance to the Volume change and distances to the other Volume and Model changes. * p<0.1, ** p<0.05, ***
p<0.01

Table A10: Impact of Volume Changes on Productivity

(1)
DPV

0-3 weeks 0.696***
(0.167)

4-7 weeks 0.319
(0.201)

Observations 810
Obs. Level Shift-Day
Mean 0.000

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 81 days x 5 events. We use as
controls month, year, and shift fixed effects. We control for a linear function of distance to the Volume change and distances to
the other Volume and Model changes. * p<0.1, ** p<0.05, *** p<0.01
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Table A11: Impact of Volume Changes on Productivity during 2017 to 2019

(1)
DPV

0-3 weeks 2.206**
(0.867)

4-7 weeks 1.952**
(0.911)

Observations 324
Obs. Level Shift-Day
Mean 0.000

Note: Standard errors clustered by distance to event and shift. Number of observations: 2 shifts x 81 days x 2 events. We use as
controls month, year, and shift fixed effects. We control for a linear function of distance to the Volume change and distances to
the other Volume and Model changes. * p<0.1, ** p<0.05, *** p<0.01

Table A12: Impact of Volume Changes on Stock of Knowledge of Working Groups

(1) (2)
Avg. Completed Avg. Cumulative

Programs Training Hours

0-3 weeks -0.660*** -4.742***
(0.145) (0.793)

4-7 weeks -0.825*** -6.734***
(0.213) (1.168)

Observations 7,040 7,040
Obs. Level Group-Week Group-Week
Mean 12.597 59.173

Note: Standard errors clustered by distance to event and working group level. Number of observations: 220 working groups x 16
weeks x 2 events. Avg. Completed Programs is the average number of training programs received by the employees in each
working group. Avg. Cumulative Training Hours is the average number of training hours received by the employees in each
working group. We use as controls month, year and group fixed effects. We control for a linear function of distance to Volume
changes and distances to the other Volume and Model changes. * p<0.1, ** p<0.05, *** p<0.01
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Table A13: Impact of Volume Changes on Number of Groups and Group Size

(1) (2) (3)
Num of Groups New Group Size Old Group Size

0-3 weeks 3.765** 21.074*** 1.724
(1.737) (0.669) (2.805)

4-7 weeks 3.624* 21.104*** 1.253
(1.949) (0.714) (4.124)

Observations 64 64 64
Obs. Level Shift-Week Shift-Week Shift-Week
Mean 54 0 19

Note: Standard errors clustered by distance to Volume change and shift. Number of observations: 2 shifts x 16 weeks x 2 events.
We use as controls month, year, and shift fixed effects. We control for a linear function of distance to the Volume change and
distances to the other Volume and Model changes. Number of groups is the number of working groups in each shift. Group size
is the average number of employees in each working group. * p<0.1, ** p<0.05, *** p<0.01

Table A14: Impact of Volume Changes on Cars per Employee/Group and Parts per Em-
ployee/Group

(1) (2) (3) (4)
Cars per Emp Cars per Group Parts per Emp Parts per Group

0-3 weeks 0.0371*** 0.890*** 194.4*** 4,628***
(0.00747) (0.133) (37.18) (660.0)

4-7 weeks 0.0471*** 1.058*** 249.4*** 5,583***
(0.00942) (0.180) (46.37) (881.3)

Observations 162 162 162 162
Obs. Level Day Day Day Day
Mean 0.256 5.025 1211.198 23750.390

Note: Standard errors clustered by distance to Volume change. Number of observations: 81 days x 2 events. Cars per Emp:
number of cars produced over number of workers by day. Cars per group: number of cars produced over number of working
groups per day. Parts per Emp: number of parts used in produced cars over the number of employees by day. Parts per Group:
number of parts used in produced cars over the number of working groups by day. We use as controls month and year fixed
effects. We control for a linear function of distance to the Volume change and distances to the other Volume and Model changes.
* p<0.1, ** p<0.05, *** p<0.01
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B Model

We use the model of Caliendo and Rossi-Hansberg (2012) to understand how product cycles

affect the organization of the firm (i.e., optimal production structure of the firm like the

number of layers, number of production workers and the knowledge they acquire at each

layer). As we mentioned before, every time a new model is introduced, the share of new

parts in the car increases, increasing the complexity of the problems solved by the workers.

Anecdotal evidence shared by the partner firm and the empirical evidence presented in Section

4, suggest an increase in the stock of knowledge and a reduction in the number of layers

every time the company faced a “model change.” In this section, we explore under what

conditions this anecdotal evidence can be rationalized by the model and is optimal for the

firm. We contrast these results with the impacts of a positive volume change that increases

quantity produced, for which we show the organizational response is a monotonic, permanent

increase in both employment and management layers, consistent with prior evidence from

manufacturing in high-income countries (Caliendo et al., 2020, 2015).

Layers Problem: Suppose that a firm pays a wage w to each of its workers and wishes

to produce q units of output. The firm chooses the optimal number of layers L in order to

minimize the cost of producing q units of output while paying a wage w to each worker and

manager. The firm solves

C (q;w) ≡ min
L≥0

{CL (q;w)} , (7)

where C(q;w) denotes the minimum variable cost of producing q units of output and CL(q;w),

the minimum cost of producing q units of output with an organization with L+ 1 layers, it is

defined by (10) below.

Workers and Knowledge Problem: Suppose that a firm has chosen an organization with

L+ 1 layers. The amount of workers the firm hires at the lowest layer (l = 0) is denoted by

n0
L, and the knowledge they acquire is denoted by z0L. At an intermediate layer l (0 < l < L),

it hires nl
L managers, each one with knowledge zlL. Since there is only one entrepreneur in

the firm, then nL
L = 1. zLL denotes the entrepreneur’s knowledge.

If the firm hires n0
L workers at the lowest layer, each of which possess knowledge z0L, then each

of these workers is capable to solve a fraction F (z0L) of the problems that the firm faces. The

fraction of unsolved problems 1− F (z0L) is left for the next layer, l = 1. Note that managers

at layer l = 1 spend a fraction h of their unit of time listening to the workers’ problems,

which implies that each manager can deal with at most 1
h
problems. It follows that n1

L must

be proportional to the amount of unsolved problems they can deal with, i.e.,
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n1
L = hn0

L

(
1− F

(
z0L
))

. (8)

Note that as the cost of communication h increases, n1
L increases. Similarly, the amount of

managers at layer l (l > 1) must be proportional to the amount of unsolved problems at that

point,

nl+1
L = nl

L

(
1− F

(
zlL
))

for all 0 < l < L. (9)

Given a sequence of knowledge {zlL}Ll=0, equation (9) gives us an evolution law for the

population within the firm. Note that, since nL
L = 1, given a sequence of knowledge {zlL}Ll=0,

the evolution law completely determines the values of nl
L for 0 ≤ l < L. It follows that the

firm only has to find the optimal knowledge sequence {zlL}Ll=0 that allows it to produce q

units of output. That is, the firm solves

CL (q;w) ≡ min
{nl

L,z
l
L}

L

l=0
≥0

L∑
l=0

labor︷︸︸︷
nl
L w

(
czlL + 1

)︸ ︷︷ ︸
wages

, (10)

s.t. A · F
(
ZL

L

)
n0
L ≥ q,

nl
L = n0

Lhe
−λZl−1

L ,

where F (z) = 1 − e−λz, for 0 < l < L, and nL
L = 1. Here, ZL

L ≡
∑L

l=0 z
l
L represents the

cumulative knowledge of the firm. Note that in (10), the firm is minimizing the cost of the

labor plus the cost of educating the workers.

B1 Stock of Knowledge

Proposition 1. If a firm wants to increase its cumulative workforce knowledge by adding a

new layer, such that ZL
L+1 − ZL−1

L = ε, for some ε > 0, then zLL > zL+1
L+1 and zlL > zlL+1 for

0 ≤ l < L.

System (13) provides explicit formulas to determine the knowledge at every layer, and

Proposition 1 uses this information to depict how a firm redistributes its total knowledge

when it changes layers. More specifically, when ε → 0 this transference of knowledge results

into a more efficient organizational structure, since the firm would not have to invest in

increasing its cumulative knowledge directly. Instead, by disclaiming less information per

layer it will be able to afford additional layers, and even reduce its average costs for levels of

production q large enough. Furthermore, the proof seen in the Appendix B4 shows how the
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knowledge of the workers at higher layers is the most affected by moving from L to L+ 1

layers, while the entrepreneur is the one that gives up the least amount of knowledge with

the transition.

B2 Model Changes

Using this general framework, we study how the organization of the firm changes endogenously

in response to product cycles. As we mentioned before, every time a new model is introduced,

the complexity of the problems increases as the share of new parts in the car increases, which

we model as a reduction in λ. A lower λ, decreases the production level qL at where the

firm should move from L to L+ 1 layers (Caliendo and Rossi-Hansberg, 2012). However, if

the firm is uninterested in changing its number of layers, it must invest in modifying other

parameters in order to balance λ’s impact. From anecdotal evidence, investing in reducing

the training cost c seems like a plausible option, so we asked: What are the admissible ratios

∆c : ∆λ that prevent the firm from increasing layers? 28

To do so, define the production level where the average cost of the firm working with

L or L + 1 layers intersect as a function of λ and c (i.e. qL := qL(λ, c)). Therefore, the

unitary vector v⃗− := −αλ̂−
√
1− α2 ĉ (or v⃗+ := −αλ̂+

√
1− α2 ĉ) for α ∈ [−1, 1] encodes

the directional derivative of qL at p⃗ := (λ0, c0) as

Dv⃗−qL(p⃗) = −α

(
∂qL
∂λ

)∣∣∣∣
p⃗

−
√
1− α2

(
∂qL
∂c

)∣∣∣∣
p⃗

.

We support the usage of v⃗− over v⃗+ because empirical tests suggest that ∂qL/∂λ > 0 and

∂qL/∂c < 0. Since model changes imply a drop in λ, the firm should restrict itself to α ≥ 0.

For this case,

Dv⃗−qL(p⃗) ≥ 0 if 0 ≤ α2 ≤
(
∂qL
∂c

)2
[(

∂qL
∂λ

)2

+

(
∂qL
∂c

)2
]−1

=: κα, κα ≤ 1.

Hence, the admissible directions on the third quadrant of the λc-plane in which qL increases

belong to the interval D := [0,
√
κα]. As a consequence, the firm can choose any α ∈ D

and establish a ∆c : ∆λ ratio of
√
1− α2 : α aiming to maintain or even reduce its optimal

number of layers.

The appropriate sign of ∂qL/∂λ and ∂qL/∂c might vary depending on the operating

point p⃗. To verify which one is the case, we also provide explicit formulas for these partial

derivatives in the proof of Lemma 1, in Appendix B4.

28We consider ∆ as the absolute change of a variable, that is ∆λ := |λ1 − λ0| and ∆c := |c1 − c0|.

B3



Lemma 1. For any L > 1, if there exists a unique zLL that satisfies system (13), then ∂qL/∂λ

and ∂qL/∂c can be explicitly and uniquely determined.

In particular, if qL presents the usual behavior at p⃗,29 then Dv⃗−qL(p⃗) increases for α → 0,

while Dv⃗−qL(p⃗) → 0 for α → κα, and thus, the firm might be tempted to select very small

values of α. However, the new operating point p⃗1 = (λ−∆λ, c0 −∆c) must have positive

coordinates and since ∆c is inversely correlated to α, the firm has to be aware of not choosing

an α small enough for ∆c > c0. We formalize this analysis in the following proposition.

Proposition 2. Suppose (∂qL/∂λ)|p⃗ > 0 and (∂qL/∂c)|p⃗ < 0, for p⃗ = (λ0, c0), and λ1 < λ0.

If the firm can invest in decreasing the training cost freely and wants to maintain a production

level q ∈ [qL−1, qL], then it has to reduce c0 by at least

∆c =
(λ0 − λ1)

√
1− α2

α
, where α2 =

(
∂qL
∂c

)2
[(

∂qL
∂λ

)2

+

(
∂qL
∂c

)2
]−1
∣∣∣∣∣∣
p⃗

and α ≥ 0,

to avoid increasing its number of layers. Moreover, for any c′ < c0 −∆c, there exists levels

of production q at which the firm opts for an organization with fewer layers.

Essentially, the partial derivatives (∂qL/∂λ)|p⃗ > 0 and (∂qL/∂c)|p⃗ < 0 quantify the

opposing effects on the intersecting point qL of reducing λ or c. The former constitutes the

negative impact of the firm having to face more complex problems, while the latter is the

favorable scenario where it can train its workers more efficiently. In that sense, Proposition 2

provides the minimum investment in training costs required to balance the effect of problem

complexity.

In addition, there is a simple graphical method, to determine the training costs c that

would result in a reduction of layers despite a model change. It consists on the firm calculating

the intersecting levels of production qL for some training costs c > 0. Then, for a fixed

production q, it identifies the active number of layers L at the original training cost c0, which

will indicate how much cost reduction is needed to reach the qL or qL−1 zone.

For example, in Figure B1, we suppose that the firm maintains a production level q = 10,

and that it has an original operating point p0 = (2, 9), with 5 active layers. Then, the model

changes from λ0 = 2 to λ1 = 1.5, and so, if the firm preserves the original training cost c0 = 9

then it has to level up to 6 layers. Conversely, if the firm wants to keep operating with 5

layers, it must reduce its training cost to some point in the interval (c4, c5] := (5.1, 8].

29∂qL/∂λ > 0 and ∂qL/∂c < 0.
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Figure B1: Level Curves and Model Changes

Note: The parameters used in the simulation are L = 3, λ0 = 2, λ1 = 1.5, h = 0.9, w = 1, and A = 1.

B3 Endogenous Training cost

Here, we developed a variation for model (7) based on introducing a penalty P (or a fee) for

investing in reducing the training cost, which results in model (11):

C (q;w) = min
{L, c}≥0

CL (q;w) + P(c, λ, L), where CL (q;w) solves (10). (11)

In (11), for each c the firm has to establish the optimal distribution of knowledge {zlL}Ll=0,

and then it selects the optimal training cost c. In addition, the fee P is designed to reinforce

the effect of training over the one of problem complexity, and reflect that reducing training

costs is inexpensive for high values of c but gradually becomes costly. Moreover, since the fee

is introduced to counter model changes, we consider penalties P that are constant for any

level of production q. That is, we introduce the following assumption.

Assumption 1.

1. P(c, λ, L) is decreasing with respect to c.
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2. P(c, λ, L) is independent of the production levels q.

Intuitively, choosing the optimal training cost for model (11) is a trade-off between lower

costs CL(q;w) and the price to pay to achieve them represented by P. Ideally, the penalty

should be calibrated to be sensitive to problem complexity changes so it can induce sufficient

drops in the training costs. Nonetheless, the firm must be wary of extremely costly or volatile

penalties, as their effects can overshadow those of the total cost function CL(q;w), which is

the main object of study.

In this paper, we propose the penalty P(c, λ, L) = (c − (ϑλ + ϑkL))−1, where ϑ ∈ R+,

ϑ > 1 and k ∈ (0, 1). Using this penalty, we define the auxiliary function

Ψ(q, λ) = min
c≥0

(CL (q;w) + P(c, λ, L))−min
c≥0

(CL+1 (q;w) + P(c, λ, L+ 1)) . (12)

Suppose that qL(λ) is the value of q for which the firm should move from L to L+ 1 layers,

for λ fixed. Proposition 3 proposes sufficient conditions to guarantee that qL(λ) < qL(λ1) for

λ− λ1 > 0 sufficiently small.

Proposition 3. If ∂Ψ(qL(λ),λ)/∂λ > 0, then there is a neighborhood of λ where we can

parameterize qL ≡ qL(λ), and this parameterization satisfies ∂qL/∂λ < 0.

Figures B2a and B2b show the effect of this penalty on the optimal training cost c, and

the resulting average cost modelled according to (11). More specifically, in Figure B2a, we

see that for every level of production q the optimal training cost drops for a model change,

which is a consequence of the ϑλ component. Also, the training curves tend asymptotically

to ϑλ + ϑkL. This separates the optimal training costs for firms with different number of

layers, primarily due to the ϑkL component. Notice that k acts as a weight between the

problem complexity and layers components of the penalty. That said, the fact that k ∈ (0, 1)

is intended to imply that the penalty is more sensitive to λ than to L. Graphically, this is

seen in Figure B2a with the cost curves between a firm with different layers being closer that

those between a firm facing two different problem complexities.

Besides, with this penalty we guarantee that cL+1 > cL to break ∂CL/∂q and ∂CL+1/∂q

apart.30 These changes seem to lead us to the desired endogenous response as seen in Figure

B2b where, despite the model change, the firm in general operates with the same amount of

layers, and the particular production levels where it does not is because it has the option to

30A graphical intuition about the changes in qL is that it will move to the right (left) if and only if
∂(CL +P)/∂q < ∂(CL+1 +P)/∂q (>). Furthermore, from the envelope theorem together with the first order

conditions for (7) we know that ∂CL/∂q = whcLe
λzL

L/λA for any L > 1, and since P does not depend on q,
then ∂(CL + P)/∂q = ∂CL/∂q.
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reduce them. More specifically, the production levels where the firm considered can reduce

its layers are q ∈ [qL(λ0), qL(λ1)] ≈ [1.6, 1.7] or q ∈ [qL+1(λ0), qL+1(λ1)] ≈ [2.9, 3.3].31

Figure B2: Endogeneous Training Cost

(a) Training cost curves. (b) Endogenous average cost.

Note: The parameters used in the simulation are: L = 3, λ0 = 2, λ1 = 1.5, h = 0.9, w = 1, and A = 1.

31The firm modelled has the parameters: h = 0.9, w = 1, and A = 0.5.
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B4 Proofs

Proof of Proposition 1. From Caliendo and Rossi-Hansberg (2012) it follows that (10) is

equivalent to solving the system

zLL = 1
λ
ln

(
A

Ae
λZL−1

L −hq

)
,

z0L = h
λ
eλz

L
L − 1

λ
− 1

c
,

z1L = 1
hλ
eλz

0
L − 1

λ
− 1

c
,

zlL = 1
λ
eλz

l−1
L − 1

λ
− 1

c
for 1 < l < L.

(13)

Also, it follows that

zLL =
1

λ
ln

(
A

AeλZ
L−1
L − hq

)
and zL+1

L+1 =
1

λ
ln

(
A

AeλZ
L
L+1 − hq

)
.

Therefore, if we define εL := zLL − zL+1
L+1 we have that

εL = zLL − zL+1
L+1 =

1

λ
ln

(
AeλZ

L
L+1 − hq

AeλZ
L−1
L − hq

)
> 0,

since ZL
L+1 − ZL−1

L = ε > 0. Now, if εl := zlL − zlL+1 for 0 ≤ l < L, we obtain that

ε0 =
h

λ

(
eλz

L
L − eλz

L+1
L+1

)
=

heλz
L
L

λ

(
1− e−λεL

)
> 0,

ε1 =
1

hλ

(
eλz

0
L − eλz

0
L+1

)
=

eλz
0
L

hλ

(
1− e−λε0

)
> 0 and

εl =
1

λ

(
eλz

l−1
L − eλz

l−1
L+1

)
=

eλz
l−1
L

λ

(
1− e−λεl−1

)
> 0 for 1 < l < L,

which concludes the proof.

Proof of Lemma 1. From Caliendo and Rossi-Hansberg (2012) we deduced that the func-

tional form of model (7) is given by:

CL(q, w) =


wc
λ

(
hq
A
eλz

L
L + (1− eλz

L−1
L ) + λzLL + λ

c

)
for L > 1,

wc
λ

(
hq
A
eλz

1
1 +

(
1− eλz

0
1

h

)
+ λz11 +

λ
c

)
for L = 1,

w
(

c
λ
ln
(

A
A−q

)
+ 1
)

for L = 0.

(14)

Therefore if qL is the production level at which the average cost of a firm operating with L
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and L+ 1 layers intersect for any L > 1, then qL satisfies the equation:

qL =
A

h

(
eλz

L−1
L − eλz

L
L+1 + λ

(
zL+1
L+1 − zLL

)
eλz

L
L − eλz

L+1
L+1

)
, (15)

where zL−1
L , zLL , z

L
L+1, and zL+1

L+1 , satisfy the system (13). Notice that the optimal knowledge

per layer depends both on λ and c. In particular, the entrepreneur’s knowledge also depends on

the distribution of knowledge of all the subordinate layers. Hence, the strategy to establish the

formula for ∂qL/∂λ (and mutatis mutandis for ∂qL/∂c) is to first, write λ(∂z
l
L/∂λ) as K

λ
1 (z

l
L)+

Kλ
2 (z

l
L)(∂z

L
L/∂λ) for every l < L, and subsequently, ∂zLL/∂λ as Kλ

1 (z
L
L) + Kλ

2 (z
L
L)(∂q/∂λ).

Notice that this is valid for both L and L+ 1. Then, deriving both sides of (15) by λ and

replacing ∂zLL/∂λ in λ∂zL−1
L /∂λ and ∂zL+1

L+1/∂λ in λ∂zLL+1/∂λ leads to an equation where we

can solve ∂qL/∂λ.

(i) To determine ∂qL/∂λ:

Step 1: From system (13) we establish that

λ
∂zlL
∂λ

=


1
λ

(
1− heλz

L
L

)
+ heλz

L
LzLL + hλeλz

L
L
∂zLL
∂λ

, for l = 0,

1
λ
+

eλz
0
Lz0L
h

+ eλ(z
0
L+zLL)

λ

(
λzLL − 1

)
+ λeλ(z

0
L+zLL) ∂z

L
L

∂λ
for l = 1,

1
λ
+
∑l−1

k=1 e
λZ

[k,l−1]
L zkL +

e
λZl−1

L z0L
h

+ e
λ(Zl−1

L
+zLL)

λ

(
λzLL − 1

)
+ λeλ(Z

l−1
L +zLL) ∂z

L
L

∂λ
for l < L,

from which we obtain the expressions for Kλ
1 (z

l
L) and Kλ

2 (z
l
L) for any l < L.

Step 2: Since λzLL = ln(A)− ln(AeλZ
L−1
L − hq) it follows that32

zLL + λ
∂zLL
∂λ

= −eλz
L
L

[
eλZ

L−1
L

(
ZL−1

L +
L−1∑
l=0

Kλ
1 (z

l
L) +Kλ

2 (z
l
L)

∂zLL
∂λ

)
− h

A

∂q

∂λ

]
. (16)

Hence, solving for ∂zLL/∂λ leads to

Kλ
1 (z

L
L) =

−1

Kλ
3 (z

L
L)

[
zLL + eλZ

L
L

(
ZL−1

L +
L−1∑
l=0

Kλ
1 (z

l
L)

)]
and Kλ

2 (z
L
L) =

heλz
L
L

AKλ
3 (z

L
L)

, (17)

where Kλ
3 (z

L
L) =

(
λ+ eλZ

L
L
∑L−1

l=0 Kλ
2 (z

l
L)
)
.

32As an abuse of notation we omit the λ super index in Kλ
1 (z

l
L) and Kλ

2 (z
l
L), 0 ≤ l < L.
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Step 3: Once we derive both sides of (15) by λ we obtain that

∂qL
∂λ

K3(qL) = K1(qL)

(
eλz

L−1
L

∂(λzL−1
L )

∂λ
− eλz

L
L+1

∂(λzLL+1)

∂λ
+ zL+1

L+1 − zLL + λ

(
∂zL+1

L+1

∂λ
− ∂zLL

∂λ

))

+K2(qL)

(
eλz

L
L
∂(λzLL)

∂λ
− eλz

L+1
L+1

∂(λzL+1
L+1)

∂λ

)
,

where K1(qL) = eλz
L
L − eλz

L+1
L+1 , K2(qL) = eλz

L
L+1 − eλz

L−1
L + λ(zLL − zL+1

L+1), and K3(qL) =

A−1h(K1(qL))
2. Substituting ∂(λzL−1

L )/∂λ and ∂(λzLL+1)/∂λ according to Step 1 and ∂zLL/∂λ

and ∂zL+1
L+1/∂λ according to Step 2, yields that ∂qL/∂λ solves the equation:33

∂qL
∂λ

K3(qL) = K1(qL) e
λzL−1

L

(
zL−1
L +K1(z

L−1
L ) +K2(z

L−1
L )K1(z

L
L)
)

−K1(qL) e
λzLL+1

(
zLL+1 +K1(z

L
L+1) +K2(z

L
L+1)K1(z

L+1
L+1)

)
+K1(qL)

(
zL+1
L+1 − zLL + λ

(
K1(z

L+1
L+1)−K1(z

L
L)
))

+K2(qL)
(
eλz

L
L
(
zLL + λK1(z

L
L)
)
− eλz

L+1
L+1

(
zL+1
L+1 + λK1(z

L+1
L+1)

))
+

∂qL
∂λ

K1(qL)
(
eλz

L−1
L K2(z

L−1
L )K2(z

L
L)− eλz

L
L+1K2(z

L
L+1)K2(z

L+1
L+1)

)
+

∂qL
∂λ

λK1(qL)
(
K2(z

L+1
L+1)−K2(z

L
L)
)

+
∂qL
∂λ

λK2(qL)
(
eλz

L
LK2(z

L
L)− eλz

L+1
L+1K2(z

L+1
L+1)

)
.

(ii) To determine ∂qL/∂c:

Step 1: From system (13) we establish that

λ
∂zlL
∂c

=


1
c2
+ heλz

L
L
∂zLL
∂c

, for l = 0,

1
c2

(
1 + e

λZl−1
L

h
+
∑l−1

k=1 e
λZ

[k,l−1]
L

)
+ eλ(Z

l−1
L +zLL) ∂z

L
L

∂c
for 0 < l < L,

from which we obtain the expressions for Kc
1(z

l
L) and Kc

2(z
l
L) for any l < L.

Step 2: Since λzLL = ln(A)− ln(AeλZ
L−1
L − hq) it follows that

λ
∂zLL
∂c

= −eλz
L
L

[
λeλZ

L−1
L

(
L−1∑
l=0

Kc
1(z

l
L) +Kc

2(z
l
L)

∂zLL
∂c

)
− h

A

∂qL
∂c

]
.

33As an abuse of notation we omit the λ super index in Kλ
1 (z

j
i ) and Kλ

2 (z
j
i ), for i ∈ {L,L + 1} and

j ∈ {L− 1, L, L+ 1}.
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Hence, solving for ∂zLL/∂c leads to

Kc
1(z

L
L) = − eλZ

L
L

Kc
3(z

L
L)

L−1∑
l=0

Kc
1(z

l
L) and Kc

2(z
L
L) =

heλz
L
L

λAKc
3(z

L
L)

,

where Kc
3(z

L
L) =

(
1 + eλZ

L
L
∑L−1

l=0 Kc
2(z

l
L)
)
.

Step 3: Once we derive both sides of (15) by c we obtain that

∂qL
∂c

K3(qL)

λ
= K1(qL)

(
eλz

L−1
L

∂zL−1
L

∂c
− eλz

L
L+1

∂zLL+1

∂c
+

∂zL+1
L+1

∂c
− ∂zLL

∂c

)
(18)

+K2(qL)

(
eλz

L
L
∂zLL
∂c

− eλz
L+1
L+1

∂zL+1
L+1

∂c

)
,

where K1(qL) = eλz
L
L − eλz

L+1
L+1 , K2(qL) = eλz

L
L+1 − eλz

L−1
L + λ(zLL − zL+1

L+1), and K3(qL) =

A−1h(K1(qL))
2. Substituting ∂zL−1

L )/∂c and ∂zLL+1/∂c according to Step 1 and ∂zLL)/∂c and

∂zL+1
L+1/∂c according to Step 2, yields that ∂qL/∂c solves the equation:34

∂qL
∂c

K3(qL) = K1(qL)
(
eλz

L−1
L

(
K1(z

L−1
L ) +K2(z

L−1
L )K1(z

L
L)
))

−K1(qL)e
λzLL+1

(
K1(z

L
L+1) +K2(z

L
L+1)K1(z

L+1
L+1)

)
+K1(qL)

(
K1(z

L+1
L+1)−K1(z

L
L)
)
+K2(qL)

(
eλz

L
LK1(z

L
L)− eλz

L+1
L+1K1(z

L+1
L+1)

)
+

∂qL
∂c

K1(qL)
(
K2(z

L
L)
(
eλz

L−1
L K2(z

L−1
L )− 1

)
+K2(z

L+1
L+1)

(
1− eλz

L
L+1K2(z

L
L+1)

))
+

∂qL
∂c

K2(qL)
(
eλz

L
LK2(z

L
L)− eλz

L+1
L+1K2(z

L+1
L+1)

)
.

Proof of Proposition 2. Let q be a fixed level of production for a firm operating with L

layers (i.e. q ∈ [qL−1(λ0, c0), qL(λ0, c0)]). Without loss of generality, consider qL(λ, c) and its

directional derivative35

Dv⃗qL(p⃗) = −α

(
∂qL
∂λ

)∣∣∣∣
p⃗

−
√
1− α2

∂qL
∂c

, for v⃗ = −αλ̂−
√
1− α2ĉ, α ∈ [0, 1].

34As an abuse of notation we omit the c super index in Kc
1(z

j
i ) and Kc

2(z
j
i ), for i ∈ {L,L + 1} and

j ∈ {L− 1, L, L+ 1}.
35λ̂ and ĉ denote unitary vectors.
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Moreover, since (∂qL/∂λ)|p⃗ > 0 and (∂qL/∂c)|p⃗ < 0, for

α2 =

(
∂qL
∂c

)2
[(

∂qL
∂λ

)2

+

(
∂qL
∂c

)2
]−1
∣∣∣∣∣∣
p⃗

, (19)

we have that Dv⃗qL(p⃗) = 0. That is, moving in the direction v⃗ = −αλ̂−
√
1− α2ĉ does not

change the production level at which the firm transitions from L to L+ 1 layers, as long as α

satisfies (19). In particular, the vector

w⃗ = ∆λ λ̂+
∆λ

√
1− α2

α
ĉ = ∆λλ̂−∆cĉ, where ∆λ := λ1 − λ0,

has the same direction as v⃗. Consequently Dw⃗qL(p⃗) = Dv⃗qL(p⃗) = 0 for α, and if q < qL(λ0, c0)

then q < qL(λ1, c0 −∆c), which means that the firm remains with at most L layers. Conclud-

ing that q > qL−1(λ1, c0 −∆c) is analogous.

Now, if c0− c′ > ∆c, then the unitary vector v⃗c′ = −α′ λ̂−
√
1− (α′)2 ĉ associated is such

that α′ < α and thus, Dv⃗c′
qL(p⃗) > Dv⃗qL(p⃗) = 0, since (∂qL/∂λ)|p⃗ > 0 and (∂qL/∂c)|p⃗ < 0.

This means that by moving in the direction v⃗c′ , the intersection between L and L+ 1 layers

occurs at a higher production level. As a consequence, for every q ∈ [qL(λ0, c0), qL(λ1, c
′)],

the firm would have initially operated with L+ 1 layers and then drop to L layers.

Proof of Proposition 3. Model 11 is minimizable with respect to c because

lim
c→∞

CL(q;w) = lim
c→(ϑλ+ϑkL)+

P(c, λ, L) = ∞.

Therefore, for any pair (q, λ), there exists cL(q, λ) that minimizes Model 11. Figure B2a

suggests that this minimum is unique. Nevertheless, if it is not unique, it suffices to take the

connected component containing one of those minimums to fully parameterize cL ≡ cL(q, λ).
36

With this, we can consider the function

ΦL(q, λ) = CL(q, λ, cL(q, λ)) + P(cL(λ, q), λ, L) (20)

to be the minimum cost for a firm with L layers, production level q and complexity level λ.

qL(λ) then satisfies the equation Ψ(qL(λ),λ) = ΦL(qL(λ),λ)−ΦL+1(qL(λ),λ) = 0. Moreover,

as qL(λ) is the value for which the firm moves from L to L+1 layers, then ∂Ψ
∂q
(qL(λ),λ) ≥ 0.

36This connected component always exists because of the Implicit Function Theorem, and to the fact that
∂2CL

∂c2 + ∂2P
∂c2 > 0 when evaluated at a minimum.
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First, we assume that ∂Ψ
∂q
(qL(λ),λ) > 0. By continuity, there exists a neighborhood

D1 ⊂ R2 of (qL(λ),λ) for which ∂Ψ
∂q
(p⃗) > 0 if p⃗ ∈ D1. Therefore, by the Implicit Curve

Theorem, we can parameterize qL as a function of λ for λ ∈ proj2(D2), with D2 ⊂ D1.

Moreover, the slope of this parameterization is given by

∂qL
∂λ

= −∂Ψ

∂λ

/∂Ψ

∂q
.

From ∂Ψ
∂λ

(qL(λ),λ) > 0, we can conclude that there is a neighborhood D3 ⊂ R2 such that
∂Ψ
∂λ
(p⃗) > 0 if p⃗ ∈ D3. This implies that for λ ∈ proj2(D), D := D2 ∩ D3, the slope of the

parameterization qL ≡ qL(λ) is negative.

On the other hand, if ∂Ψ
∂q
(qL(λ),λ) = 0, the order of the first derivative that does not

vanish must be odd, which implies we repeat the previous argument to the left and right

of λ to parameterize qL ≡ qL(λ) and show that the slope of this parameterization is again

negative.
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