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Abstract

The cost of making bad hiring decisions leads many employers to use personality

tests as a first round screening. Problems arise when different misclassification er-

rors incur different penalties. When facing a limited labor supply or high benefit-cost

ratio of the vacancy, firms tend to avoid dropping potential candidates even if this

means they have to include some unsuitable candidates and vice versa. Thus, it is

important to design a tool that could balance these two types of errors based on both

market tightness and the benefit-cost ratio of the position. In this paper we introduce a

cost-sensitive machine learning framework that minimizes hiring cost under different

conditions. We empirically show our cost-sensitive learning approach could achieve

a lower hiring cost compared with other methods.
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1 Introduction

Studies show that personality measures can predict occupational performance in a wide

variety of jobs. Hogan and Holland (2003) summarized that well-constructed measures

of normal personality are valid predictors of a wide range of occupational performance

metrics. For example, Dollinger and Orf (1991) found that conscientiousness is a success-

ful predictor of college student’s course grade. Barrick and Mount (1991) found that three

personality dimensions, emotional stability, openness, and agreeableness, explained 28%

of the variation in participants’ management performance. Salgado and Rumbo (1997)

found that Big Five traits are strong predictors of job performance for financial service

managers. Previous studies have paid attention to how personality traits predict man-

agers’ or students’ performances. Here, we focus on the predictive power of personality

tests on the performance of online customer service workers. We conducted a personality

survey via Mturk1 and then gave these surveyed workers three types of customer service

tasks: objective tasks, judgment tasks, and review tasks and scored their performance

on each of them. We then use machine learning methods to predict the score workers

obtained in customer service tasks according to their personalities.

Our aim is to understand how firms can make use of psychometric screening in their

hiring processes in order to lower hiring costs. We consider firms that receive applica-

tions for vacancies from a large number of candidates and that aim to reduce the size

of this pool by way of machine learning screening. Applicants are a priori too similar to

distinguish qualified from unqualified ones by simply looking at their résumés. To tell

these two types of applicants apart, an interview is needed.2 Firms have idiosyncratic

interview costs and benefits of filling a vacancy. Moreover, qualified job seekers may be

few and far between depending on the state of the economy. Hence, a firm that wants

1Amazon Mechanical Turk (MTurk) is a website for businesses to hire remote workers in order to do
specific tasks.

2We assume that firms are able to separate qualified from unqualified applicants with probability one
at the interview stage.
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to build an efficient screening framework needs to take these elements into account. In

fact, we show that these elements play a key role in the choice of machine learning model

to use, with the model choice often changing with the state of the economy for the same

firm.

The abundance of quality applicants, or lack thereof, is particularly interesting and

novel in the machine learning literature. When the market is tight and qualified job seek-

ers are rare, a screening algorithm that is too restrictive may falsely reject too many appli-

cants and fail to escalate the few truly qualified applicants that applied for the vacancy.

Instead, when qualified applicants are abundant, a more restrictive algorithm may be just

what the firm needs as it will escalate enough, but not too many, applicants to the in-

terview round where a sufficient number of truly qualified applicants will be discovered

and hired. Because rejecting qualified applicants by mistake (False Negative) and wrong-

fully interviewing unqualified applicants (False Positive) bear different costs, one can’t

simply balance these two types of misclassification errors to yield an efficient framework.

Indeed, a framework must be sensitive to the differences in cost entailed by the different

type of errors embedded in machine learning models.

Cost-sensitive imbalanced machine learning has been a widely studied problem in

some other branches of the literature (Elkan, 2001; Zadrozny et al., 2003; He and Gar-

cia, 2009; Buda et al., 2017), as many real-world problems have specific costs relating to

each type of misclassification errors. For example, cost-sensitive learning has been used in

credit scoring (Xia et al., 2017), where the cost of incorrectly loaning money to a defaulting

individual is different to the cost of not loaning money to a person who will never default;

in software defect prediction (Liu et al., 2014), where misclassifying defect prone compo-

nents leads to a higher cost than misclassifying non-defect prone components; in churn

modelling, where failing to identify a profitable or unprofitable churner has different eco-

nomic implications. One interesting application that has received much discussion is the

credit card fraud detection problem, which has similarities with our study. Banks screen
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on transactions to decide whether to classify some transactions as being suspicious that

can then be further investigated. Banks have to pay the investigation cost if they falsely

tag normal transactions as being suspicious and bear an often large money loss if they

fail to investigate a fraudulent transaction. Therefore, missing a fraudulent transaction

can be much more costly than paying the investigation cost on a normal transaction mis-

classified as being potentially fraudulent. Banks have to design screening frameworks to

minimize the expected total cost under different conditions. Studies show that many ma-

chine learning techniques can be used to minimize this expected cost. Sahin et al. (2013)

designed a cost-sensitive decision tree based on cost related entropy. Stolfo et al. (2000)

found that AdaBoost model is predictive in cost-sensitive problems. Besides, neural net-

works (Maes et al., 2002), Bayesian learning (Maes et al., 2002), support vector machines

(Bahnsen et al., 2013) are also widely used algorithms that have found success in cost-

sensitive scenarios. In this paper we partition the dataset in three subsets: a training set, a

validation set, and a testing set. We use the training data in order to fit the different mod-

els, the validation data to choose the cost-minimizing model, and the testing set to report

the value of the cost function for the chosen model. In addition to proposing particular

algorithms, Bahnsen et al. (2013) suggested a Bayes Minimization Risk function to mini-

mize expected total cost in credit card fraud detection problems. In our paper, we design

a cost matrix that takes into account both firm idiosyncratic interview cost and benefit of

filling a vacancy, as well as the labor market tightness and construct a Bayes Minimization

Risk function accordingly. Then we propose associated classification thresholds that can

be used reach the lowest cost for each algorithm.

The remainder of the paper is organized as follows: In section 2 we introduce our

main methodology and explain our model selection scheme. In section 3, we describe

our dataset. In section 4 we present the main empirical strategy used in the work, and

in Section 5 we present the paper’s main results. Lastly, in Section 7 we draw our main

conclusions for the work.
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2 Cost-Sensitive Design: Optimal classification threshold

2.1 Model

In the hiring market, firms post some vacancies and receive a large number of applicants

for a limited number of positions. Since it is costly for firms to screen every single partic-

ipant through interviews, employers may benefit from carefully designed psychometric-

screening procedures to select the most qualified applicants to interview.3 If psychome-

tric screening is cheaper than interviews, then the net total hiring cost for a particular

vacancy is likely to fall for two reasons:4 first, psychometric screening can help identify

qualified individuals who may have been ignored otherwise, and second, it may reduce

the number of interviews to conduct. In this section, we first describe the problem a firm

faces using psychometric screening to reduce the number of applicants and then inter-

view the retained applicants. Next, we explain the data requirements needed to build

a psychometric-screening machine learning algorithm. Finally, we provide a strategy to

choose between algorithms. We show that the choice depends on the cost structure and

the tightness of the labor market.

Here, we consider the psychometric screening process as a binary classification prob-

lem, where the screening procedure aims to predict whether an applicant is qualified for

a task or not. For simplicity, we assume that firms can tell whether an applicant is quali-

fied or not without error at the interview stage. However, the psychometric screening is

inherently imperfect; thus, firms need to consider the two types of errors present in any

classification algorithms, namely false positive and false negative, when designing such

processes. A false negative occurs when a qualified applicant is not identified as such

3Certain psychometric characteristics can be correlated with certain demographics such as race and
gender. Psychometric screening could potentially exacerbate disparities if used in an inappropriate man-
ner. It goes without saying that sensitive characteristics such as gender, race, religion, sexual orientation,
should not be used to train the screening algorithms. Second, a conscientious employer interested in using
psychometric screening could do so within demographic groups to identify the most qualified individuals
within each group and interview all retained individuals.

4The net hiring cost, it the benefit of hiring a person minus the cost of hiring that person.
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by the algorithm and the applicant is not escalated to the interview round. Instead, a

false positive means that an unqualified applicant is identified as being qualified and is

escalated to the interview round.

These two errors will have different costs for the employer. False positives imply that

an employer interviews an unqualified applicant and rejects that applicant post interview

while bearing the interview cost. False positives, instead, mean that the firm misses out

on qualified workers. We assume that the cost of missing out on a qualified worker de-

pends on the tightness of the labor market. That is, it is more costly to fail to interview

a qualified applicant when qualified individuals rarely apply to a vacancy than when

quality applicants are relatively abundant.

Therefore, a good algorithm must take into account the relative cost of the classifica-

tion errors in order to minimize the net total of hiring cost. Here, we assume that the cost

of having an applicant do a psychometric survey is negligible to the firm. For simplicity,

we also assume that all truly qualified applicants who make it to the interview round are

hired.

The net total hiring cost then depends on the employer’s idiosyncratic incremental

benefit of filling a vacancy with a qualified worker instead of an unqualified worker, b,

and its interview cost per applicant, t, as well as the relative abundance of quality appli-

cants in local labor market. We assume that the number of qualified individuals apply

follows a Poisson process. Let q(θ) be the (Poisson) arrival rate for a vacancy normalized

to be between 0 and 1, where θ is the market tightness defined as the ratio of vacancies,

v, to the number of workers unemployed in the local labor market, u.5 A Poisson process

means that in some given short time interval ∆t, the probability that one vacancy will be

filled with one matched worker is q(θ)∆t. This probability increases with the unemploy-

ment rate µ and with the length of time interval ∆t.

For example, if a single qualified applicant applies per period on average, then q(θ) =

5We can parametrize the arrival rate as q(θ) = ηθ−β where η is a measurement of job search frictions
and β is the matching function elasticity (Moscarini, 2005; Rogerson et al., 2005).
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1. Instead, if one quality applicant applies every 2 periods on average, then q(θ) = 0.5.

Then, we can interpret q(θ) as the probability of seeing a qualified applicant per period.

As a result, λ = 1 − q(θ), is the probability of losing the benefit associated with hir-

ing a qualified applicant if such an individual is wrongfully rejected in the psychometric

screening phase. When the screening algorithm correctly classifies an individual as be-

ing qualified, the employer interviews this worker and the applicant is hired providing a

benefit, b, to the firm. Table 1 summarizes the possible classifications of an applicant and

the cost to the firm for each of these cases.

Note that the labor market conditions affect the screening process by affecting the

opportunity cost of losing a potential talented employee. To be specific, if the job market

is full of vacancies with relatively less job seekers or search frictions are large, it will be

difficult for firms to find another suitable candidate if they wrongfully reject one. In other

words, the cost of a false negative will be larger in a tight labor market. Take two extreme

cases as examples. When q(θ) = 0 and λ = 1, a representative firm will never have the

chance to meet such person if the firm turns down a qualified candidate so the firm will

lose the benefit of hiring a qualified individual (b) with probability one. On the other

hand, when q(θ) = 1 and λ = 0, firms are sure to get an application from a qualified

worker later. In this case, the cost of wrongfully rejecting a qualified worker is negligible.

The specification above allows us to write the net expected cost for applicant i as:

Total Cost = TP × (t − b) + FP × t + FN × λb, (1)

where TP, denotes True Positives, FP, False Positives, TN, True Negatives, and, FN,

False Negatives. Note that TP = 1 if the applicant is truly qualified and identified as such

by the algorithm and 0 otherwise, FP = 1 if the applicant is not qualified, but wrongly

classified as being qualified by the algorithm and 0 otherwise. Finally, FN = 1 if the

applicant is unqualified and correctly identified as such by the algorithm and 0 otherwise.
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Here, we assume that the employer hires all truly qualified applicant that make it to the

interview stage. This is consistent with large firms with a large number of entry-level jobs

facing an even larger pool of applicant such as warehouse personnel at Amazon or drivers

at Uber. We can easily imagine that it may be hard to predict an applicant’s suitability

for these jobs from their résumé alone, since many may not have experience in these

occupations for example.6 Following machine learning literature conventions, we can

also write the cost function above for individual i as a loss function L(pi, yi):

L(pi, yi) = yi [pi(t − b) + (1 − pi)bλ] + (1 − yi)pit, (2)

where yi equals 1 if worker i is qualified for the position and 0 otherwise. Similarly, pi

equals 1 if i is predicted to be qualified by the algorithm and 0 otherwise.

2.2 Optimal threshold

In the psychometric screening phase, we aim to predict whether an applicant is qualified

for the position based on their psychometric profile and experience. In the present paper,

we rely on soft classification algorithms and obtain the class conditional probabilities, that

is, the probability that a given individual is qualified or not.7 Then, we choose a classi-

fication threshold that minimizes the expected cost of making classification decision. A

classification threshold is a performance level (in estimated probability of being qualified)

above which an individual is deemed to be qualified for a task. For example, imagine that

6Suppose that the firm has ν vacancies to fill. Let #TP, and #FN be the number of true positives and
false negative respectively, and assume that all truly qualified workers have a uniform change of being hired
post interview, then Total Cost = TP × (t − bν

#TP ) + FP × t + FN × λ bν
#TP+#FN . Here, ν

#TP is the probability of
hiring this applicant if they are found to be truly qualified in the interview stage. ν

#TP+#FN is the probability
that a qualified person is hired if all qualified individuals make it to the interview round.

7Among numerous classifiers, some are hard classifiers while some are soft ones. Soft classifiers explic-
itly estimate the class conditional probabilities and then perform classification based on estimated proba-
bilities whereas hard classifiers directly target on the classification decision boundary without producing
the probability estimation. These two types of classifiers are based on different philosophies and each has
its own merits (Liu et al., 2011). Soft classification provides more information than hard classification and
consequently it is desirable in our situation where the probability estimation is useful (Wang et al., 2007).
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a firm has a performance metric for particular task ranging between 0 and 100%, where

100% means that someone is able to perform this task without mistake. A firm may want

to hire applicants that it believes will do a task correctly at least 80% of the time. This

threshold can be set extraneously, by the employer, but the threshold can also depend on

the cost, benefit and labor market conditions to minimize the total expected hiring cost.

To find the cost minimizing productivity threshold, we first compute the expected

cost, or risk, of escalating someone to the interview given the information set we have

about the applicant, Xi, and the expected cost of rejecting an applicant in the psychometric

screening round. The former can be written as:

R(pi = 1|Xi) = L(pi = 1, yi = 1)P(yi = 1|Xi) + L(pi = 1, yi = 0)P(yi = 0|Xi). (3)

Similarly, we can write the expected cost of rejecting an applicant in the first round as:

R(pi = 0|Xi) = L(pi = 0, yi = 0)P(yi = 0|Xi) + L(pi = 0, yi = 1)P(yi = 1|Xi). (4)

In the equations above, P(yi = 1|Xi) and P(yi = 0|Xi) are the probabilities that applicant

i is truly qualified or not given their psychometric profile and experience, Xi. L(pi, yi) is

the loss function specified in Equation (1). The expected cost of predicting that applicant

i is qualified given Xi, is given by R(pi = 1|Xi). Similarly, the expected cost of predicting

that the applicant is unqualified given Xi, is R(pi = 0|Xi).

Given the psychometric and experience information, the optimal strategy is to pro-

mote applicant i to the interview stage if the expected cost of doing so exceeds the ex-

pected cost of rejecting the applicant in the psychometric screening phase. That is:

R(pi = 1|xi) < R(pi = 0|xi)
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By using (1), (2), and (3), we obtain the following optimal threshold:

P(yi = 1|Xi) >
t

(1 + λ)b

Thus, to minimize the total expected cost, individuals should be promoted to the inter-

view stage if their conditional probability of being qualified exceeds t
(1+λ)b . This means

an employer should interview more applicant if the interview cost is low, when qualified

applicants are less abundant, and/or when the benefit of filling a vacancy is high.

3 Experiment and Data

We recruited workers on Amazon’s online work platform, Mechanical Turk. Every worker

was asked to complete an extensive psychometric survey in which we measured a wide

array of soft and cognitive skills, as well as demographic information. Workers who par-

ticipated in the study and completed the survey were then ask to perform tasks designed

to mimic aspects of customer support occupations. We detail the survey and the tasks

below. For the purpose of this study, we retain data from the 253 participants who com-

pleted all questions of the survey and attempted all tasks.

3.1 Survey Protocol

Participants were first asked to complete an extensive demographic and psychometric

survey. They received $2 for attempting the survey and an additional $5 for answering

most questions which implies $8.5/hour pay on average.

The demographic section measures variables that may be more easily observed from

CV’s and résumés such as age, education, general experience and experience in customer

services, and English proficiency.

The psychometric sections of the survey includes measures of skills, traits, and be-
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haviors spanning cognitive and noncognitive abilities.8 The survey consists of several

different modules intended to measure both traditional dimensions of worker skill found

to be associated with performance and additional modules on personality and risk and

time preferences. Table 2 presents summary statistics for these measures. The different

psychometric modules can be organized in the following categories:

• Soft skills: Recent empirical studies have begun to document the incremental im-

portance of soft skills for earnings and productivity (Borghans et al., 2008; Heckman

and Kautz, 2012). We include the Big 5 personality trait modules capturing consci-

entiousness, openness, extraversion, emotional stability or neuroticism, and agree-

ableness. We also measure the participants’ self-esteem, grit and resilience, general

motivation, and autonomy. We measure the participants’ ability to read emotions

and how strong they believe having the ability to control events or enact changes.9

• Cognitive skills: The literature on return to cognitive skills in productivity and

earnings is long-standing and well-established (Boissiere et al., 1985; Bowles et al.,

2001). To inform cognitive skills we use Raven’s Progressive Matrices module,

which is a common psychometric test capturing abstract reasoning and fluid in-

telligence.

• Risk and time preferences: In addition to the measures of soft and cognitive skills

above, we measure participants’ aversion towards risk and their patience.

3.2 Performance outcomes

Participants were told that they would be offered further and better-paid work (on aver-

age) upon completion of the survey.10 The work in question consisted of tasks representa-
8see Boissiere et al. (1985); Rosenberg (1965); Borghans et al. (2008); Heckman and Kautz (2012); Duck-

worth and Steinberg (2015)
9The former skills are captured by the Reading-the-mind-in-the-eyes and locus of control psychometric

modules.
10Participants could read the following at the beginning of the survey: If you properly complete the survey

(i.e., provide reasonable answers to all questions), you will also be invited to the second part of the study. The second
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tive of certain aspects of the work done in customer service occupations. We constructed

three sets of tasks. In the first tasks, participants have to objectively report product infor-

mation. In the second set of tasks, participants have to judge which product satisfies the

requests of hypothetical customers. In the last tasks, have to review actual negative re-

views written about a product and write a hypothetical reply to the customers. We detail

the different tasks further below.

3.2.1 Objective tasks

In the objective tasks, participants are presented the product page of certain products on

Amazon. They are then asked to list information about the products such as the price and

sales price, the number of items left in stock, and so on. Performance is measured by the

proportion of correct information listed by the participant to the total number of queries.

3.2.2 Judgment tasks

In these tasks, participants are presented information for 3 competing products listed on

Amazon. For example, three different sleeping bags from three different brands. Then, in

each task, they see five hypothetical requests from customers and have to suggest which

product or products (if any) satisfy the customer requests. Below is an example of a

request:

I’m 6 feet tall and my current sleeping bag is too small. I want a bag that will fit me

and that will keep me warm bellow 15◦F.

The participants have to find which product(s) (if any) fits the length and tempera-

ture requirements of the customer. Performance is assessed by the number of correctly

satisfied requests to the number of requests in a given task.

part will pay significantly more on average than this survey. It will pay on average $10.40 per hour and up to $11.75
per hour depending on performance. The second part of the study consists of a set of customer service style tasks
performed online in a similar survey environment.
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3.2.3 Review/Reply tasks

In these tasks, participants are shown the product page of a product on Amazon. They

are then shown four negative reviews that were actually left by customers who purchased

the product. The participants are instructed to reply in a way that they believe to be likely

to convince the review writer to continue buying from the product manufacturer in the

future.11 The participants have to decide which customers to write back to and follow

specific rules in doing so. For example, they have to reply to at most three and at most

two customers. Each reply has to respect a word count. Up to one customer may be

offered a refund, and if so, the participant should explain that they are offering a refund

and are escalating their case to a manager for processing.

Performance is assessed in two ways. We first compute the percentage of objective

guidelines that were respected. Then, we hired three research assistants to score the qual-

ity of two replies chosen at random for each task and for each participant. To do so, the

RA’s had to suppose they were the one who wrote the initial comment, read the partici-

pant’s reply, and answer to what degree they agreed with the three following statements

using a five-point scale:

1. My concerns were heard and understood by the customer services.

2. The response from the customer service representative fully addressed my com-

plaint(s).

3. I would buy from this manufacturer again and/or recommend the manufacturer’s

product to a friend.

We compute the total score on every reply for each RA and take the average total score

across the three RA’s as the final measure of quality.

11They were shown example of good and bad replies to reviews left on another product when we intro-
duce that task, but we did not explain what made the replies good or bad.

12



In each task type, participants had to do at least 2 tasks that all had multiple questions.

We present the densities of the outcomes in Figure 1. We see that there is substantial

variation in performance across tasks.

4 Empirical Strategy

In this section, we formally bring the model’s predictions to the data. The model predicts

that applicants should be promoted to the interview stage if the conditional probability

of being qualified exceeds the optimal cutoff, t
(1+λ)b , or the cutoff chosen by the firm.

In this section, we recover two exogenous parameters, λ, and the optimal cutoff needed

for the machine learning algorithms. These two parameters should be determined by out-

side labor market conditions and firm preferences rather than the algorithms themselves.

Here we present one way for firms to choose the parameters.

4.1 Labor market index (λ)

As we noted previously, λ is the labor market tightness index which measures the dif-

ficulty of finding an alternative qualified worker for a vacant position. Intuitively, as λ

increases, qualified workers are more difficult to find and the expected cost of excluding

an applicant from the interview round increases. λ depends on the number of qualified

candidates in the market, the size of the labor supply, and the labor demand as measured

by the number of vacancies.

In the labor market, there are vacancies needing to be filled and candidates looking

for jobs. Intuitively, when the number of vacancies is large relative to the number of job

seekers, then firms have to compete more intensely for qualified workers as they are rel-

atively limited. As a result, the probability of receiving an application form a qualified

individual is lower. If there are relatively few vacancies relative to the number of seekers,

the probability of receiving an application from a qualified person is higher. Therefore,
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the probability of qualified arrivals during a unit of time, q, is a function of market tight-

ness, θ, defined as the ratio between the number of vacancies in the entire market and

the number job seekers in the market.12 Suppose that q(θ) = 0 and a firm receives an

application from a qualified person. Then, the firm will never have the opportunity to

find another qualified worker if they wrongfully reject this applicant. This means the cost

to the firms for a false negative prediction (i.e. wrongfully rejecting a qualified applicant)

is equal to the benefit the firm would have received from hiring this foregone quality

applicant, relative to hiring an unqualified applicant.

When q(θ) = 1, the firm has a 100% change of receiving an application form another

qualified workers if they were to reject the current applicant. In this case, the cost of

wrongfully rejecting a quality applicant is close to 0.

Following this logic, if q(θ) increases by 1%, meaning that the firm is 1% more likely

to find another quality applicant during the current period, the cost of a false negative to

the firm will drop by 1%. This implies a negative linear relationship between λ and q(θ).

The tightness of a market varies over time as some firms and individuals start and end

their job search process every period. Here, we consider the screening problem of a firm

at a specific point in time. For simplicity, we use a constant λ averaged across several

time periods and across all markets. This allows us to get a general idea of the cost for

firms in the U.S labor market. That is, we let λ be the following:

λ =
1
T

ΣT
t=1(1 − q(θt)) (5)

Next, we follow Shimer (2007) and recover the arrival rate of qualified workers during

a unit of time, q(θt). Shimer (2007) develops the matching function measuring the tran-

sition rate from unemployment to employment as a function of vacancy-unemployment

ratio, q(θt). In his approach, workers and jobs are randomly assigned to labor markets

12To be specific, we use Poisson arrival rate to model the arrival of qualified workers as Poisson process
is the most commonly used model for random, mutually independent message arrivals.
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and there exist markets with unemployment. In some markets there are more job seekers

and vacancies, and in others, there are more vacancies than job seekers. He allows for

frictions creating a mismatch between workers and firms in the labor market. Shimer’s

model is consistent with the U.S. Beveridge curve and yields a Cobb-Douglas matching

function of the following form:

q(θt) = aθ−b
t

, where θt is the tightness of the market defined as θt =
vt
ut

. vt is the vacancy rate in period

t, and ut is the unemployment rate in period t.13 The parameter a represents the degree

of search frictions, and b is the matching function elasticity. In Shimer’s job flow model

estimation, the matching function is derived as:

q(θt) = 0.551θ0.214
t (6)

In order to recover λ, we plug in the unemployment rate and the vacancy rate into

equations (5) and (6). We construct unemployment rates as the ratio between unemployed

workers and the number of employed and unemployed workers. We construct vacancy

rates as the ratio of job openings to the number of employed workers and job openings.

Employment and unemployment data is obtained from the Bureau of Labor Statistics

(BLS) and the Current Population Survey (CPS), and the job opening data is obtained

from the Job Openings and Labor Turnover Survey (JOLTS).14 We focus on the pre-Covid

period of Jan 2010 to Dec 2019.15 Following this strategy, we get λ = 0.5 under Shimer’s

model. We also show results under less frictions with λ = 0.25 and more frictions with
13This should be the aggregate job searching rate instead of total unemployment rate in matching func-

tion. In actual use, however, the unemployment rate is common.
14We use seasonally adjusted data to eliminate trend effects.
15We want to get the most recent 10 years of data which should be enough to get a general sign of how

well the overall labor market matched. We avoid Covid years because this is a natural shock and will
disrupt the general view.

15



λ = 0.75.16

Following the same procedure for different markets would allow idiosyncratic firms

to recover values of λ for their relevant market. As a starting point, firms that find it

difficult to find applicants for a job may set λ = 0.75. If finding applicants is relatively

easy, they may set λ = 0.25. When finding applicants for a job is neither difficult nor easy,

they may set λ = 0.5.

4.2 Cutoffs

In order to train the classification models, we first need a sample of candidates in which

we know who is qualified or not. Firms can observe a sample of existing workers with

varying degrees of qualification, their performance, and their characteristics. They can,

then, train the models using this sample. Once the models are trained, the characteristics

of a new candidate can be inputted into the trained models which will predict whether

this candidate is qualified or not. In the context at hand, we have candidates and their

performance on different tasks and we need to find a cutoff for each task to decide which

candidate is qualified and which is not. We select the cutoffs in a way that the proportion

of workers said to be qualified in the sample reflects the proportion of truly qualified

workers in the market.

Given the arrival rate of qualified workers, η = q(θ), which measures the average

number of applicants arriving during a unit of time, we want to know the proportion of

qualified workers in the whole pool of applicants. That is, with the distributions of pro-

ductivity in a given task, we want to set a cutoff, above which workers will be considered

qualified and below which they will be considered unqualified. This way, we obtain a

classification problem for each task. For simplicity, we suppose that 1 worker arrives in

each period. Therefore, it takes N periods to allow all workers to apply, where N is the

160.5 is what we estimate from the model. As we mentioned before, this just served as a general example
for firms to consider. 0.25 and 0.75 are two arbitrary number we pick to test our model for less frictional
and more frictional cases. Firms should set their own λ according to the labor market condition they face.
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total number of workers looking for jobs.

The probability that n qualified workers apply within N periods, Pn, can be expressed

as:

Pn =
(η · N)n

n!
e−ηN. (7)

It can be showed that the number of qualified candidates in the sample of applicants is

given by:

n = arg max
n∈Z

Pn = [ηN] = [(1 − λ)N].

Table 3 presents the distribution for performance in the different tasks. When a given

λ is selected, then one should only consider the top 1 − λ candidates as being qualified

under the current procedure. Recall that doing so will minimize the hiring cost in expec-

tation. For example, if λ = 0.75 then the top 25% of performers should be considered

as qualified. Alternatively, a firm may use a threshold that fits its productivity require-

ments, but may not lower the interview cost. For example, a firm with high productivity

standards may consider only the top 10% of performers as being qualified, regardless of

the market tightness.

5 Results

In this section, we present a strategy to select machine learning models in order to mini-

mize the hiring cost of a firm.

5.1 Productivity threshold

We first show the implications of choosing productivity thresholds that depend on the

abundance of quality job seekers in the market, relative to an exogenous threshold.

Let’s consider the optimal market-tightness-driven threshold to a non-optimal thresh-
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old of 0.5 chosen exogenously. That is, a threshold where applicants with predicted prob-

ability of being qualified that exceeds 50% are promoted to the interview round. By virtue

of not taking into account the abundance of workers, this exogenous threshold will not

minimize the interview cost.

To be specific, we can write whether an applicant is promoted to an interview or not

under the suboptimal (S) and optimal (O) thresholds as follows:

Promoted to InterviewS =

 1 if P(yi = 1|xi) > 0.5

0 if P(yi = 1|xi) ≤ 0.5
(8)

Promoted to InterviewO =

 1 if P(yi = 1|xi) >
t

(1+λ)b

0 if P(yi = 1|xi) ≤ t
(1+λ)b

(9)

In equations (8) and (9), P(yi = 1|xi) represents the probability that an applicant is

truly qualified estimated by a given model (conditional on the variables included in the

model.) For example, the first line of equation (9 indicates that an applicant is promoted

to an interview if their probability of being truly qualified estimated by the model exceeds

t
(1+λ)b .

When λ = 0.25, b/t = 1.5, the optimal classification threshold becomes t
(1+λ)b = 0.83

while the suboptimal threshold remains unchanged, i.e., 0.5.

At these parameter values, quality applicants arrive relatively frequently. Therefore,

there is less of a need to interview and hire individuals with a low probability of being

truly qualified. On the other hand, when λ = 2
3 , b/t = 1.5, the optimal threshold becomes

0.4, reflecting the fact that quality applicants are rarer and more applicants need to be in-

terviewed. The selection result of each model with and without model search is listed in

Table 4.

We find that going from the suboptimal threshold (0.5) to the optimal threshold (0.83),
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the number of false positives decreases. This is because the probability of being mis-

classified as qualified is 34% smaller (17% vs 50%). On the other hand, since we are more

selective under the optimal threshold, the number of true positive has to fall reflecting the

compromise between true positives and false positives in classification models. This com-

promise benefits the firm however. Since truly qualified applicants are fairly frequent, it

is worth failing to interview all truly qualified applicants. Indeed, we can see that the

total interview cost is generally lower under the optimal threshold.

5.1.1 Model Selection

In the exercise we partition the data into three datasets: a training set, a validation set,

and a testing set. We fit the models using the training set. The validation set allows us

to select versions of each models that optimises our objective. In particular, we use three

model-selection strategies: (1) we select models by minimizing the hiring cost function

presented before, (2) we select models by maximizing using an Fβ statistic, (3) we select

models with the highest true positive rates. We report the cost implied by each model

using the testing set. We repeat the exercise for different market tightness values, λ and

for different values of the benefit of filling a vacancy to the interview cost, b/t. We present

the results in Tables 5-8. The Fβ statistic is an object commonly used in the machine

learning literature. It strikes a balance between (1) the number of true positives, and (2)

the number of false positives and false negatives since one can’t increase (1) without also

increasing (2). We provide further details about this statistic in Appendix 8.2.

Tables 5-8 indicate that the best models are not always the same for all scenarios. When

outside labor market condition (λ) or the cost structure of firms (b/t) change, the optimal

machine learning model often changes as well. The intuition is that different models put

different weights on true positives and true negatives. As a result, when truly qualified

applicants become rarer or their value/cost to the firm changes, different models will do

a better job at reducing the hiring cost for the firms.
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The selection criteria chosen also matters. Postulating the cost function and selecting

models on that metric will, of course, minimize the hiring cost. A firm may instead choose

a model that yields, say, the highest number of true positives or maximizes an F statistic.

However, we show that doing so does not always lead to selecting the cost-minimizing

model. The reason is that these metrics focus only on some aspects of the total hiring cost.

For example, when focusing on the number of true positives, the firm has a larger

pool of qualified applicants to draw from. However, to find all these qualified folks, the

firm needs to live with higher false positives and/or false negatives rates that increase

mechanically. Indeed, to increase the number of true positives, firm will need to inter-

view more people which will necessarily include less qualified applicants or interview

applicants with very high probability of being qualified, thereby forgoing to interview

applicants with a lower probability of being qualified that may, nevertheless, be quali-

fied.

As false positives and false negatives pose different cost to firms, they will need to

adjust the classification thresholds in order to minimize total cost. For example, when

qualified workers are difficult to find or very valuable (when b/t is large or λ is small),

firms may benefit from interviewing more applicants some of whom may be unqualified

to ensure that they will not miss out on any qualified applicants.

Our model selection based on the total cost function leads the firms to select the profit-

maximizing model (if correctly specified) since it accounts for the labor market condition

as well as the cost and benefit of hiring by individual firms.

5.1.2 Model Evaluation

Next, we study the performance of the various machine learning models under different

labor market conditions and different cost and benefit of filling a vacancy. We present

the results in Figures 3 through 7. On the vertical axis, we plot the total hiring cost for

every model measured in standard deviation units from the average model cost to easily
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compare model performance across parameter values. On the horizontal axis we plot

the labor market tightness and evaluate the models at λ = 0.2, λ = 0.5, and λ = 0.75.

Figure 3 panel (a), (b), and (c) show the results for the objective task evaluated at b/t =

1.5, b/t = 2, and b/t = 4, respectively. The following figures repeat the exercise for the

other tasks.

The first main takeaway is that no single model always dominate the others whether it

be within task or across tasks. This goes back to the point we made earlier that models put

different weights on TP, FP, and FN. Therefore, as quality workers become rarer or the

benefit of hiring to the cost of interview ratio changes, a firm may benefit from choosing

a different model that will weigh these elements in a way that reflect the changes.

Second, the differences in cost are large. The difference between the lowest-cost model

and the second-lowest cost model often exceeds one standard deviation. This means that

the algorithm choice for a large employer can be critical.

Third, some models tend to do better than others. For example Random Forest and

Logistic Regressions tend to yield among the lowest cost, while AdaBoosting tends to

yield a higher cost.

5.2 Parameter Analysis

In Table 13 we present the raw total hiring cost for different values of the parameters. As

we see from the table, the total cost for each task under the same b/t increase as λ in-

creases. The larger λ is, the tighter is the market. This parameter enters our cost function

as the multiplier for the cost of false negatives. Also, the increase of λ represents higher

classification threshold given by equation (19) (clarify this). Intuitively, when λ increases,

the number of qualified workers in the potential pool decrease which means it is difficult

for firms to find another qualified applicant if they wrongly dismiss one in the screening

phase. In this case, it is costly to make wrong predictions and it is more difficult to make

right prediction as λ rises. As a result, the total cost increases. Moreover, the number of
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true positive predictions falls as λ increases. Hence, algorithms that put a high weight on

true positive rates become less desirable as λ increases. With higher values of λ, models

that jointly minimize false positive and false negative rates tend to perform better.

In Figure 8 we plot the total hiring costs as the values of both λ and b/t change. When

the value of λ increases, then the cost tend to increase as we mentioned above. Also,

when the value of b/t decreases, then the benefit/interview cost is low, so the overall

cost tends to decrease. The lowest costs are achieved when the arrival rate is high and

the benefit/interview cost ratio is low. This situation can arise when unemployment is

relatively high so that many quality applicants are looking for jobs and employers have

streamlined their interview processes lowering the interview cost for example.

6 Fair Machine Learning

The use of risk assessments by machine learning in sensitive areas such as criminal justice,

hiring procedures or loan applications has been subject to intense scrutiny in the recent

years (Berk et al., 2021). Such machine learning algorithms can be discriminatory towards

protected groups, when variables for race and gender are included for example, as the

data used to train this models could encode past discriminatory decisions. For example,

if women were historically and systematically offered risky loans and men safer loans,

then women would appear to default more often. As a result, predicting default risk

from historical data using gender as a variable in the model can mechanically predict that

women default more often. However, if past default was rooted in unequal treatments,

the algorithm would repeat and could exacerbate the issue.

One of the proposed methods for alleviating discrimination and getting fairer machine

learning models is anti-classification (Corbett-Davies and Goel, 2018). Anti-classification

is when machine learning models do not consider protected attributes (such as gen-
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der, race, or its proxies) in order to make a decision. In this work we implement anti-

classification by changing the value of all protected features in the testing set to the mean

of that protected feature. We can see in Tables 9, 10, 11, 12 the performance of the model

selection technique with this anti-classification procedure and several values of λ and b/t.

This important consideration will often lead to a different choice of model.

7 Conclusion

Firms rely more and more on personality traits to screen workers. We provide a frame-

work that firms can use to streamline this process by way of carefully implemented ma-

chine learning algorithms. We show that minimizing the hiring cost is not straightforward

but that choosing the right machine learning model can greatly reduce cost. To do so re-

quires taking into account not only the idiosyncratic interview cost and benefit of filling

vacancies by firms, but also the market tightness that governs the abundance of qualified

workers in the economy.
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Table 1: Cost Table related to the hiring problem.

Predictions of the Algorithm
Qualified Unqualified

Truly Qualified True Positive (TP) False Negative (FN)
Net cost t − b λb

Truly Unqualified False Positive (FP) False Negative (TN)
Net cost t 0

Note: Table 1 assigns costs to all the possible classifications a given model may as-
sign to a given individual. If a truly qualified individual is classified as qualified,
then the cost of the interview is t − b. If a truly qualified individual is classified as
non-qualified then the cost of not interviewing is λb. If a truly unqualified individ-
ual is classified as qualified then interviewing them has a cost t. If a truly unquali-
fied individual is classified as unqualified then the cost of not interviewing him is 0.
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Table 2: Summary of Statistics

Mean SD
Personality
Self esteem 14.478 34.514
Locus of controls -7.793 7.471
Motivation 19.880 18.652
Grit 11.312 27.210
Resilience 5.547 20.832
Conscientiousness 15.730 27.032
Openness 51.849 24.338
Extraversion -2.540 31.961
Agreeableness 29.506 26.687
Emotional stability -28.220 33.817
Auto 48.786 24.772
Reading the mind in the eyes
Reading score 25.281 6.552
Success of reading 0.723 0.187
Raven test
Raven score 46.553 10.016
Success of raven test 0.428 0.116
Risk and time preferences
Risk averse index 3.455 1.478
Discount index 1.435 0.771
Observables
Age 35.395 10.323
Education 14.024 10.416
Experience 7.356 6.974
Experience of customer service 4.324 1.300
English 4.846 0.412
Task
Objective task 49.340 7.314
Judgment task 5.202 1.564
Review 25.195 9.489
Review obj criteria 4.818 1.949
Review general score 14.329 5.444
N 253

Note: Table 2 presents the means and standard deviations of the psychome-
tric variables measured to distinguish between qualified and unqualified work-
ers. There are 6 groups of variables: Personality, which relates to the per-
sonality traits of a given individual; Reading the mind in the eyes, which is
a test that measures social intelligence; Raven Test, a test used to measure ab-
stract reasoning capabilities; Risk and time preferences; Observables, which re-
late to some individual characteristics relating to age, knowledge and experi-
ence; and Task which measures the ability of a worker to perform a given task.
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Table 4: Parameter Setting λ = 0.25, b/t = 1.5. Objective Task

Metric TP FP FN TC
Model Y N Y N Y N Y N
Random Forest 28 28 3 3 0 0 -11 -11
Logistic Regression 18 18 3 4 3 3 -4.875 -3.875
Neural Network 27 27 0 0 2 2 -12.75 -12.75
k-Nearest Neighbors 25 25 2 2 0 0 -10.5 -10.5
Support Vector Machine 24 24 3 3 1 1 -8.625 -8.625
Stochastic Gradient Descent 23 23 4 4 4 4 -6 -6
Gradient Boosting 25 25 3 3 1 1 -9.125 -9.125
Ada Boosting 3 21 1 4 21 3 7.375 -5.375

Note: Table 4 presents the performances in True Positives (qualified workers
classified as qualified), True Negatives (unqualified workers classified as unqual-
ified), False Negatives (qualified workers predicted as unqualified) and the To-
tal Cost (Equation 2.1) for the different models with different classification thresh-
olds, with the models with superscript N relate to the threshold in Equa-
tion 8, and the models with superscript Y relate to the threshold in Equa-
tion 9. The workers are classified according to their objective task score.

29



Table 5: Parameter Setting λ = 0.75, b/t = 2

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 11 0.92 0.671 2.5 Neural Network
hF 11 0.92 0.71 2.5 Neural Network
hTP 12 1.00 0.60 8 ADA Boosting
Panel B : Judgment Task
hPro f it 14 1.00 0.729 -1 Random Forest
hF 14 1.00 0.729 4 Random Forest
hTP 14 1.00 0.66 4 5 Neural Network
Panel C: Review Task
hPro f it 5 0.714 0.531 3 Random Forest
hF 5 0.714 0.531 3 Random Forest
hTP 7 1.00 0.411 14 ADA Boosting
Panel D: Review General Score
hPro f it 14 0.875 0.729 -7 k-Nearest Neighbors
hF 14 0.875 0.729 -7 k-Nearest Neighbors
hTP 16 100 0.74 -4 Neural Network
Panel E : Review Objective Criteria
hPro f it 1 0.167 0.227 7.5 Gradient Boost Classifier
hF 1 0.5 0.3 14.5 Random Forrest
hTP 3 0.5 0.3 14.5 Random Forrest

Note: Table 5 presents the performances in True Positives (qualified workers classi-
fied as qualified), True Positive rate (percentage of true positives over total qualified
workers, representing the percentage of correctly classified qualified workers), F which
is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which repre-
sents the name of the classifier that gives the best prediction according to lower val-
ues of Equation 2.1, hF which reports the name of the classifier with highest Fβ mea-
sure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 6: Parameter Setting λ = 0.25, b/t = 4

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 24 1.00 0.945 -75 Gradient Boost Classifier
hF 24 1.00 0.945 -75 Gradient Boost Classifier
hTP 24 1.00 0.912 -73 Random Forest
Panel B : Judgment Task
hPro f it 24 1.00 0.896 -72 Random Forest
hF 24 1.00 0.896 -72 Random Forest
hTP 24 1.00 0.896 -72 Random Forest
Panel C: Review Task
hPro f it 24 1.00 0.905 -67 Random Forest
hF 24 1.00 0.905 -67 Random Forest
hTP 24 1.00 0.905 -67 Random Forest
Panel D: Review General Score
hPro f it 24 1.00 0.857 -64 Support Vector Machine
hF 24 1.00 0.857 -64 Support Vector Machine
hTP 24 1.00 0.74 -65 Random Forest
Panel E : Review Objective Criteria
hPro f it 24 1.00 0.872 -65 Logistic Regression
hF 24 1.00 0.872 -65 Logistic Regression
hTP 24 1.00 0.827 -65 Logistic Regression

Note: Table 6 presents the performances in True Positives (qualified workers classi-
fied as qualified), True Positive rate (percentage of true positives over total qualified
workers, representing the percentage of correctly classified qualified workers), F which
is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which repre-
sents the name of the classifier that gives the best prediction according to lower val-
ues of Equation 2.1, hF which reports the name of the classifier with highest Fβ mea-
sure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 7: Parameter Setting λ = 0.75, b/t = 1.5

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 8 0.533 0.55 9.875 Logistic Regression
hF 8 0.533 0.55 9.875 Logistic Regression
hTP 16 1.00 0.652 9.5 ADA Boosting
Panel B : Judgment Task
hPro f it 14 0.875 0.743 3.25 Random Forest
hF 14 0.875 0.743 3.25 Random Forest
hTP 16 1.00 0.694 7.00 Support Vector Machine
Panel C: Review Task
hPro f it 2 0.22 0.248 11.875 k-Nearest Neighbors
hF 2 0.22 0.248 11.875 k-Nearest Neighbors
hTP 9 1.00 0.488 15.5 ADA Boosting
Panel D: Review General Score
hPro f it 23 1.00 0.891 -5.5 Random Forest
hF 23 1.00 0.891 -5.5 Random Forest
hTP 23 1.00 0.891 -5.5 Random Forest
Panel E : Review Objective Criteria
hPro f it 1 1.00 0.25 4.875 Random Forest
hF 1 1.00 1.00 4.875 Random Forest
hTP 4 1.00 1.00 26 Ada Boosting
Note: Table 7 presents the performances in True Positives (qualified workers classi-
fied as qualified), True Positive rate (percentage of true positives over total qualified
workers, representing the percentage of correctly classified qualified workers), F which
is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which repre-
sents the name of the classifier that gives the best prediction according to lower val-
ues of Equation 2.1, hF which reports the name of the classifier with highest Fβ mea-
sure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 8: Parameter Setting λ = 0.25, b/t = 1.5

Performance Model Selection
TP TP rate(%) F TC Best Model

Panel A : Objective Task
hPro f it 28 1.00 0.95 -12 Random Forest
hF 28 1.00 0.95 -12 Random Forest
hTP 28 1.00 0.95 -12 Random Forest
Panel B : Judgment Task
hPro f it 28 1.00 0.905 -10 Random Forest
hF 28 1.00 0.905 -10 Random Forest
hTP 28 1.00 0.905 -10 Random Forest
Panel C: Review Task
hPro f it 22 0.956 0.873 -6.625 Random Forest
hF 21 0.913 0.873 -4.75 Stochastic Gradient Descent
hTP 22 0.956 0.873 -6.625 Random Forest
Panel D: Review General Score
hPro f it 22 1.00 0.796 -3 Random Forest
hF 22 1.00 0.796 -3 Random Forest
hTP 21 0.954 0.796 -3.124 Logistic Regression
Panel E : Review Objective Criteria
hPro f it 19 0.905 0.846 4.75 k-Nearest Neighbors
hF 19 0.905 0.846 4.75 k-Nearest Neighbors
hTP 18 0.857 0.857 -4.875 Stochastic Gradient Descent

Note: Table 8 presents the performances in True Positives (qualified workers classi-
fied as qualified), True Positive rate (percentage of true positives over total qualified
workers, representing the percentage of correctly classified qualified workers), F which
is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which repre-
sents the name of the classifier that gives the best prediction according to lower val-
ues of Equation 2.1, hF which reports the name of the classifier with highest Fβ mea-
sure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 9: Parameter Setting λ = 0.75, b/t = 2

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 11 0.92 0.73 -1 Logistic Regression
hF 11 0.92 0.73 -1 Logistic Regression
hTP 11 0.92 0.73 -1 Logistic Regression
Panel B : Judgment Task
hPro f it 9 0.82 0.57 8 k-Nearest Neighbors
hF 9 0.82 0.57 8 k-Nearest Neighbors
hTP 11 1.00 0.57 10 Neural Network
Panel C: Review Task
hPro f it 8 1.00 0.45 16 Stochastic Gradient Descent
hF 8 1.00 0.45 16 ADA Boosting
hTP 8 1.00 0.45 16 ADA Boosting
Panel D: Review General Score
hPro f it 4 0.57 0.49 6.5 k-Nearest Neighbors
hF 7 1.00 0.41 18 ADA Boosting
hTP 7 1.00 0.41 18 ADA Boosting
Panel E : Review Objective Criteria
hPro f it 18 0.90 0.80 -7 Gradient Boost Classifier
hF 18 0.90 0.80 -7 Gradient Boost Classifier
hTP 20 1.00 0.83 -10 Neural Network

Note: Table 9 presents the performances in True Positives (qualified workers classi-
fied as qualified), True Positive rate (percentage of true positives over total qualified
workers, representing the percentage of correctly classified qualified workers), F which
is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which repre-
sents the name of the classifier that gives the best prediction according to lower val-
ues of Equation 2.1, hF which reports the name of the classifier with highest Fβ mea-
sure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 10: Parameter Setting λ = 0.25, b/t = 4

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 26 1.00 0.94 -75 Gradient Boost Classifier
hF 26 1.00 0.94 -75 Gradient Boost Classifier
hTP 26 1.00 0.89 -72 Random Forest
Panel B : Judgment Task
hPro f it 29 1.00 0.95 -84 Random Forest
hF 29 1.00 0.95 -84 Random Forest
hTP 29 1.00 0.95 -84 Random Forest
Panel C: Review Task
hPro f it 26 1.00 0.89 -72 Random Forest
hF 26 1.00 0.89 -72 Random Forest
hTP 26 1.00 0.89 -72 Random Forest
Panel D: Review General Score
hPro f it 25 1.00 0.89 -69 Logistic Regression
hF 25 1.00 0.89 -69 Logistic Regression
hTP 25 1.00 0.87 -68 Random Forest
Panel E : Review Objective Criteria
hPro f it 26 0.93 0.93 -74 Gradient Boost Classifier
hF 26 0.93 0.93 -74 Gradient Boost Classifier
hTP 28 1.00 0.93 -80 Random Forest

Note: Table 10 presents the performances in True Positives (qualified workers clas-
sified as qualified), True Positive rate (percentage of true positives over total quali-
fied workers, representing the percentage of correctly classified qualified workers), F
which is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which
represents the name of the classifier that gives the best prediction according to lower
values of Equation 2.1, hF which reports the name of the classifier with highest Fβ

measure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 11: Parameter Setting λ = 0.75, b/t = 1.5

Performance Model Selection
TP TP rate F TC Best Model

Panel A : Objective Task
hPro f it 3 0.42 0.34 11 Logistic Regression
hF 3 0.42 0.34 11 Logistic Regression
hTP 7 1.00 0.37 21.5 ADA Boosting
Panel B : Judgment Task
hPro f it 7 0.875 0.44 15.625 k-Nearest Neighbors
hF 7 0.875 0.44 15.625 k-Nearest Neighbors
hTP 8 1.00 0.41 20 ADA Boosting
Panel C: Review Task
hPro f it 0.0 0.0 0.0 8.75 Support Vector Machine
hF 6 1.00 0.34 22 ADA Boosting
hTP 6 1.00 0.34 22 ADA Boosting
Panel D: Review General Score
hPro f it 0.0 0.0 0.0 10.125 Neural Network
hF 9 1.00 0.45 18.5 ADA Boosting
hTP 9 1.00 0.45 18.5 ADA Boosting
Panel E : Review Objective Criteria
hPro f it 21 0.95 0.84 -2.375 Random Forest
hF 21 0.95 0.84 -2.375 Random Forest
hTP 22 1.00 0.82 -1 ADA Boosting
Note: Table 11 presents the performances in True Positives (qualified workers clas-
sified as qualified), True Positive rate (percentage of true positives over total quali-
fied workers, representing the percentage of correctly classified qualified workers), F
which is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which
represents the name of the classifier that gives the best prediction according to lower
values of Equation 2.1, hF which reports the name of the classifier with highest Fβ

measure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 12: Parameter Setting λ = 0.25, b/t = 1.5

Performance Model Selection
TP TP rate(%) F TC Best Model

Panel A : Objective Task
hPro f it 26 1.00 0.92 -10 Random Forest
hF 26 1.00 0.92 -10 Random Forest
hTP 26 1.00 0.92 -10 Random Forest
Panel B : Judgment Task
hPro f it 26 0.9 0.92 -9.875 Logistic Regression
hF 26 0.9 0.92 -9.875 Logistic Regression
hTP 26 0.9 0.92 -9.875 Logistic Regression
Panel C: Review Task
hPro f it 25 1 0.89 -8.5 Random Forest
hF 25 1 0.89 -8.5 Random Forest
hTP 25 1 0.89 -8.5 Random Forest
Panel D: Review General Score
hPro f it 22 0.95 0.8 -6.625 Random Forest
hF 22 0.95 0.8 -6.625 Random Forest
hTP 22 0.95 0.8 -6.625 Random Forest
Panel E : Review Objective Criteria
hPro f it 27 0.96 0.92 -10.125 Gradient Boosting
hF 27 0.96 0.92 -10.125 Gradient Boosting
hTP 27 0.96 0.92 -10.125 Gradient Boosting

Note: Table 12 presents the performances in True Positives (qualified workers clas-
sified as qualified), True Positive rate (percentage of true positives over total quali-
fied workers, representing the percentage of correctly classified qualified workers), F
which is the F∗

β measure, TC which is the total cost as in Equation 2.1, hPro f it which
represents the name of the classifier that gives the best prediction according to lower
values of Equation 2.1, hF which reports the name of the classifier with highest Fβ

measure, and hTP which reports the name of the classifier with highest TP predicted.
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Table 13: Total cost for different values of λ and b/t.

Total Hiring Cost

b/t
λ 0.25 0.5 0.75

Objective
1.5 -8.25 -0.75 13.5
2 -21.0 0.0 9.5
4 -74 -22 -14
Judgment
1.5 -2.5 -2.5 6.375
2 -15.5 -7 -6
4 -72 -46 -20
Review Score
1.5 -4.25 5.25 12.25
2 -16.5 -8 14
4 -55 -31 -12
Review obj Criteria
1.5 -7.375 0 0.875
2 -23.5 -12 -5.5
4 -71 -44 -51
Review General Score
1.5 -1.125 5.5 9.625
2 -17 -12 17.5
4 -65 -34 -16
N 253

Note: Table 13 presents the performances in Total Cost (Equa-
tion 2.1) for the best model for each of the combination of λ and
b/t and each of the classification tasks proposed in this work.
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Figure 1: Densities for Outcomes

(a) Judgment Task (b) Objective Task

(c) Review General Score (d) Review Objective Criteria

(e) Review Task

Note: Figure 1 shows the distributions of all the different outcomes included in our study. In the Objective
tasks, participants were shown product pages from Amazon and were ask to report information about the
product such as the price, the number of item left in stock, the rating of the product. In the Judgment tasks,
they were presented with hypothetical customer requests about different products, like sleeping bags, and
had to select the product(s) that satisfied the request of the customer from a set of products. For example,
a client may request look for a sleeping bag of a particular size and temperature and participants had to
find which of three candidate sleeping bags if any would fit the parameters set by the client. In the Review
tasks, participants were shown 4 actual (bad) reviews that customers left on certain products on Amazon,
and they then had to decide to which customer(s) they wanted to reply to and write hypothetical replies
within a set number of words. In each task type, participants had to do at least 2 tasks that had multiple
questions.
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Figure 2: Boxplots

(a) Judgment task (b) Judgment task

(c) Objective task (d) Objective task

(e) Review task (f) Review task

(g) Review General Score (h) Review General Score

(i) Review Objective Criteria (j) Review Objective Criteria

Note: Figure 2 we split the different outcomes at the median of each measure across workers and construct
boxplots of each outcome for each sumsamble (above and below median)
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Figure 3: Model Evaluation for Objective Task

Note: Figure 3 presents the Total Cost in the test set for various different classification models, using differ-
ent values of b/t and lambda for the Objective Task. The Blue line represents the cost for a random forest,
the dark green line represents the cost for a logistic regression, the red line represents the cost for a neural
network, the teal line represent the cost for a K-Nearest Neighbor classifier, the purple line represent the
cost for a support vector machine, the light green line represents the cost for a stochastic gradient descent
classifier, the black line represent the cost for a Gradient Boosting classifier and the orange line represents
the cost for a AdaBoost classifier.
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Figure 4: Model Evaluation for Judgment Task

Note: Figure 4 presents the Total Cost in the test set for various different classification models, using differ-
ent values of b/t and lambda for the Judgment Task. The Blue line represents the cost for a random forest,
the dark green line represents the cost for a logistic regression, the red line represents the cost for a neural
network, the teal line represent the cost for a K-Nearest Neighbor classifier, the purple line represent the
cost for a support vector machine, the light green line represents the cost for a stochastic gradient descent
classifier, the black line represent the cost for a Gradient Boosting classifier and the orange line represents
the cost for a AdaBoost classifier.
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Figure 5: Model Evaluation for Review Task

Note: Figure 5 presents the Total Cost in the test set for various different classification models, using dif-
ferent values of b/t and lambda for the Review Task. The Blue line represents the cost for a random forest,
the dark green line represents the cost for a logistic regression, the red line represents the cost for a neural
network, the teal line represent the cost for a K-Nearest Neighbor classifier, the purple line represent the
cost for a support vector machine, the light green line represents the cost for a stochastic gradient descent
classifier, the black line represent the cost for a Gradient Boosting classifier and the orange line represents
the cost for a AdaBoost classifier.
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Figure 6: Model Evaluation for Review General Score

Note: Figure 6 presents the Total Cost in the test set for various different classification models, using differ-
ent values of b/t and lambda for the Review General Score. The Blue line represents the cost for a random
forest, the dark green line represents the cost for a logistic regression, the red line represents the cost for a
neural network, the teal line represent the cost for a K-Nearest Neighbor classifier, the purple line repre-
sent the cost for a support vector machine, the light green line represents the cost for a stochastic gradient
descent classifier, the black line represent the cost for a Gradient Boosting classifier and the orange line
represents the cost for a AdaBoost classifier.
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Figure 7: Model Evaluation for Review Objective Criteria

Note: Figure 7 presents the Total Cost in the test set for various different classification models, using dif-
ferent values of b/t and lambda for the Review Objective Criteria. The Blue line represents the cost for a
random forest, the dark green line represents the cost for a logistic regression, the red line represents the
cost for a neural network, the teal line represent the cost for a K-Nearest Neighbor classifier, the purple
line represent the cost for a support vector machine, the light green line represents the cost for a stochastic
gradient descent classifier, the black line represent the cost for a Gradient Boosting classifier and the orange
line represents the cost for a AdaBoost classifier.
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Figure 8: Total hiring costs for different values of λ and b/t.

Note: Figure 8 presents total cost on the test set for the best classifier of the ones considered in this work for
many different configurations of λ and b/t.
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8 APPENDIX

8.1 Search and Matching models

8.2 Fβ

Definition: The relative importance a user attaches to precision and recall is the P/R ratio
at which δE/δR = δE/δR, where E = E(P, R) is the measure of effectiveness based on
precision and recall.

Intuition: The way to quantifying importance is to specify the P/R ratio at which the
user is willing to trade an increment in precision for an equal loss in recall.

Rijsbergen (1979) uses E (for ’effectiveness measure’), which is just 1 − F and the expla-
nation is equivalent whether we consider E or F.

F =
1

( α
P + 1−α

R )
(10)

δF/δP = δF/δR (11)

α

P2 =
1 − α

R2 → R
P
=

√
1 − α

α
=: β (12)

Fβ =
(1 + β2)× Precision × Recall

β2 × Precision + Recall
(13)

We need to find the right weight, β, that satisfies

The harmonic mean is more intuitive than the arithmetic mean when computing a
mean of ratios. Suppose that you have a finger print recognition system and its precision
and recall be 1.0 and 0.2, respectively. Intuitively, the total performance of the system
should be very low because the system covers only 20% of the registered finger prints,
which means it is almost useless. The arithmetic mean of 1 and 0.2 is 0.6 whereas the
harmonic mean of them is 0.333 is a more reasonable score than the arithmetic mean (0.6)

β is a parameter that controls a balance between P and R. When β = 1, F1 comes to
be equivalent to the harmonic mean of P and R. If β > 1, F becomes more recall-oriented
and if β < 1, it becomes more precision oriented, e.g., F0 = P. While it seems that van
Rijsbergen did not define the formula of the F-measure per se, the origin of the definition
of the F-measure is van Rijsbergen’s E (effectiveness) function (Rijsbergen, 1979):
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8.2.1 Fβ index

The direct evaluations we can get from the output of the models are: TP (True Positive),
FP (False Positive), FN (False Negative) and TN (True Negative). As defined in statistical
learning, we define precision and recall as:

Precision = TP
TP+FP

Recall = TP
TP+FN

(14)

We want the model that has highest precision and recall. To do this, we can either increase
TP points or reduce FN and FP. According to ’No Free Lunch Theorem’, there isn’t a
model that could boost in both precision and recall because there is always a trade off.
Let’s combine these two evaluations in the weighted harmonic mean and pick the most
commonly used F score as a one-way criteria.

F =
1

( α
P + 1−α

R )
(15)

We can see that a higher score on TP points means both higher precision and recall and
higher precision or recall will lead to higher F. In general TP can’t increase without de-
creasing FP, we can only balance precision and recall rate to achieve the highest F. Let’s
take the partial derivatives w.r.t P and R and set them equal to achieve balance.

δF/δP = δF/δR (16)

Then we get the maximal F condition:

α

P2 =
1 − α

R2 → R
P
=

√
1 − α

α
(17)

Let β =
√

1−α
α , then Fβ can be defined as:

Fβ =
(1 + β2)× Precision × Recall

β2 × Precision + Recall
(18)

and when R
P = β, Fβ reaches its maximum. In other words, we prefer models with high

TP. And if TP can’t increase at the determent of FP, we want to balance FP errors and FN
errors such that R

P = β.
We want the model with largest F has the lowest cost so we have to find the relation-

ship between β and our cost parameters (t, b and λ).First let’s express cost function in
terms of TP (True Positive), FP (False Positive), FN (False Negative) and TN (True Nega-
tive).

TotalCost = TP × CostTP + FP × CostFP + FN × CostFN + TN × CostTN (19)
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We could also write cost function w.r.t P (precision), R (recall) and TP:

TotalCost = TP × [(t − b) + (
1
P
− 1)t + (

1
R
− 1)bλ] (20)

We could see models with larger precision and recall will have lower cost. If the cost is
negative, models with larger TP will have lower cost and vise versa.

In order to find β, let’s fixed TP and leave precision and recall as independent variables
to minimize total cost. In equilibrium:

δCost/δP = δCost/δR (21)

We could get:

R
P
=

√
λb
t

(22)

This means if total cost is negative, model with highest number of TP points will have
lower cost. If TP rates are similar among models, the one that could balance FP and FN

error in way that R
P =

√
λb
t will have lowest cost. If we set β = R

P =
√

λb
t , given TP

rates are similar among models, the one with largest Fβ will have lowest total cost. If total
cost is negative, both Fβ and cost minimization prefer higher TP and balance FP and FN
errors in the same direction. If total cost is positive, Fβ is not a good indicator for cost
minimization.

8.3 Feature Selection–LASSO

As seen in Figure 9, for objective task and judgment task, if the cutoff is too large or
too small, there will be too much noise and the personality information has little pre-
diction power. However, if we pick a moderate cutoff, around top 30% to top 70%, we
could identify which group of variables is most related to the screening qualified work-
ers.Remember that in our review task, more than 60% of the task takers have full mark so
only full mark cutoff will enable us to identify qualified worker by personality informa-
tion. Objective task is the easiest, the work experience and customer support experience
is not needed. For judgment task which is more difficult, experience is informative in
predicting scores.

Objective task is the easiest task to predict. In predicting it, as seen in Table 14, some
ability-related characteristics, like the working experience and education level has nega-
tive correlation with task score while some personality related to persistence has positive
correlation, like conscientiousness, locus of control, resilience and successes. For judg-
ment task which is much more difficult, work experience has positive relationship with
final score. Some personality types, like extraversion and motivation seems to have nega-
tive relationship. However, personality traits like emotional stability, agreeableness, risk
aversion, and scores on Ravens tests are useful to predict qualified workers for judgment
task. For review task, English score is important, which was not the case on the other
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Table 14: LASSO coefficients for different tasks.

Variables Coefficient (cutoff)
Objective task (≥ 52) Judgment task (≥ 6) Review task (≥ 2)

Motivation 0 -0.023 0
Conscientiousness 0.011 0.009 0.020

Extraversion -0.030 -0.007 0
Agreeableness 0.027 0.014 0

Emotional stability 0 0.015 0.004
Openness 0 0 0

Locus of control 0.047 0 0.010
Self-esteem 0 0 0

Grit 0.043 0.020 0
Autonomous function index 0 0 -0.002

Resilience 0.003 0 0
Risk aversion 0 0.058 0

Discount aversion 0.003 0 0
Reading mind in eye 0 0 0

Successes of reading mind tests 0.123 0 0.162
Raven’s progressive metrics test 0.090 0.085 0

Successes of raven tests 0.007 0.014 0
Work experience -0.002 0.042 0

Customer support experience -0.010 0 -0.004
Education -0.025 0 0

English score 0 0 0.020

Note: Table 14 presents the LASSO coefficients for the
different variables on the different classification tasks.
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Figure 9: LASSO for Feature Selection

Note: Figure 9 presents total number of variables left with the LASSO procedures for the objective task,
judgment task and review task, using different cutoffs.

two tasks. Also, emotional score, self-esteem and success help predict qualified work-
ers and autonomous and customer support experience related negatively with worker
performance for this task.
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