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Abstract

I construct stochastic discount factors (SDFs) from unlevered asset returns and

a large number of cross-sectional stock return predictors. I adopt a Bayesian ap-

proach in this high-dimensional setting and obtain a characteristics-sparse 5-factor

SDF that summarizes 62.4% of out-of-sample cross-sectional variations. Implied

mean-variance efficient portfolio outperforms its optimal levered counterparty that

consists of 88 factors in both out-of-sample Sharpe ratio and market alphas. Unlev-

ered market returns eliminate the alpha of the efficient stock returns. The failure

to shrink the number of factors in recent literature is partly due to constructing

factor-mimicking portfolios in the suboptimal levered return space.
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Introduction

All factor models in empirical asset pricing are derived as specilizations of the comsump-

tion-based model (Cochrane, 2009). It is often forgotten that most factors are merely

intuitively motivated proxies for the marginal rate of substitution, or the stochastic dis-

count factor Mt+1 = βu′(ct+1)/u′(ct) (SDF), rather than risks themselves. Specifically,

any characteristics that predict asset returns or aggregate macroeconomic risks can be

defended as pricing factors because they affect consumptions and thereby marginal util-

ity, granting “fishing license”(Fama, 1991) that leads to “the factor zoo”(Feng, Giglio,

and Xiu, 2020). However, two important assumptions bridging the consumption- and

characteristics-based models are often made without scrutiny: 1. economically, factor-

mimicking portfolios are built in the return space that faithfully reflects the economic

theory behind the characteristics as return predictors; and 2. statistically, factors and

returns are either bivariate normal.

The violations of the assumptions are prevalent across all asset classes, especially in

stock pricing. For instance, the economic foundation for chatacteristics such as size and

profitability being stock returns predictors essentially reveal risk profile on a firm level.

Hence, the SDF should be projected onto the unlevered return space to fully reflect the

economic driver behind. In reality, however, corresponding factors are typically built

with stock returns, despite them simply being a derivative to the future cash flow of the

firm. What’s worse, any defense on the normality and linearity lacks conviction since the

return on equities as call options to the underlying assets is a highly non-linear function

of the underlying return even under the mildest assumption.

This paper investigates whether the abuse of the assumptions has in part contributed

to spurious anomalies in the cross-sectional stock pricing in a high-dimenstional setting.

I adopt a data-driven approach to shrink daily factors built in both levered stock
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return space and unlevered asset return space (hereafter “levered SDF” and “unlevered

SDF”) from 100 firm characteristics that existing literature has claimed to have predictive

power, compiled by Green, Hand, and Zhang (2017). I unlever stock returns following the

structural credit risk model of Merton (1974). To overcome the high-dimensional chal-

lenge, I employ an economically motivated Bayesian prior following Kozak, Nagel, and

Santosh (2020). The prior distribution relates the first and second moments of candidate

factors and disproportionately penalizes coefficients of factors associated with high-eigen-

value pricipal components (PCs). Optimal SDF coefficient estimators are derived under

hyperparameters in the posterior that yield the highest out-of-sample (OOS) R2. This

paper uncovers evidence that forcing the assumptions to linear factor models have been

overloading the SDF with spurious factors: the optimal unlevered SDF only consists of

5 factors that can explain 62.4% of OOS cross-sectional variation: market, 12-month

momentum, return on equity, asset growth, and revenue surpirses. In contrast, the op-

timal levered SDF consists of 88 factors but only explains 36.9% OOS variations. In

addition, I compare the alphas of the mean-variance-efficient (MVE) portfolios implied

by the levered and unlevered SDF against various benchmark portfolios. While the annu-

alized alphas of the levered MVE portfolio are significant 5.50% and 3.53% when testing

against stock market and Fama-French 4 factors, it drops to an insignificant −1.92%

when testing against the unlevered market return. On the other hand, the alphas of the

unlevered MVE portfolio are economically higher and statistically more significant than

those of the levered MVE portfolio across all benchmarks. To alleviate the concern that

Merton-implied portfolios are not directly tradable, I also construct a set of “tradable

unlevered factors” that are readily accessible with a combination of stocks and risk-free

treasuries and the results persist. This paper points to a parsimonious CAPM-like factor

model in the unlevered space with stronger OOS performance.

Admittedly, these assumptions for factors to proxy marginal utility growth are by
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no means inexorable, especially when strictly adhering to the rules usually introduces

statistical challenge and does not necessarily translate to better economic interpretation

due to a lack of granular data and measurement errors. Relaxing the assumptions by

building factor-mimicking portfolios in the return space of interest is desirable for its

enormous practicality: in a näıve OLS setting, MVE portfolios on a day-by-day basis are

revealed simulataneously with the coefficient estimation by simply regressing the mean

on the covariance matrix of the factors. Therefore, researchers have deliberately chosen

to price stocks with stock factors, bonds with bond factors, and so on because they strike

a balance between statistical convenience and factors’ roles as proxies for marginal utility

growth.

However, the balance has tipped in favor of a more rigorous discipline for factor mod-

els recently. In face of hundreds of “anomalies”, researchers have been searching for a

characteristics-sparse SDF representation that is linear in only a few economically moti-

vated factors with the help of recent development in various unconventional techniques

that tackle with high-dimensionality such as elastic nets, partial least squares, and prin-

cipal component regressions. Unfortunately, it seems new cross-sectional signals keep

emerging and the list of factors need constant expansion to capture the new evidence.

A lengthy SDF incurs higher cost to falsefully build characteristics-managed portfolios

in stock return space when the characteristics capture firm-level risk profile because sta-

tistical errors accumulate every time a new ill-defined factor enters the list. When one

only focuses on a sparse SDF, the benefits of projecting the SDF onto certain return

spaces outweigh the expenses of relaxing the assumptions for factors to proxy marginal

rate growth. That was the price asset pricers were willing to pay for a long time. In

current high-dimensional climate, the accumulation of the imprecision hinders the search

for a sparse factor model and is too grave to ignore.

Revisiting the discussion of what are the fundamental risk factors that capture the
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marginal rate of substitution is particularly relevant in stock pricing, not only because

of “the factor zoo”, but also because unlevering stock returns is an intuitive and feasible

move to address the common concern of almost all stock-level factors that corresponding

firm-level factors are arguably better at reflecting full economic interpretation of the risks.

Equities are call options to the underlying assets of a firm with the face value of its debts

as the strike price. The cross-sectional variation of the unlevered returns and the risk

factors behind are non-linearly magnified by the leverage. Studying a pronounced and

non-linear derivative to the total cash flow of firms helps identify the issue of current

factor models and potential improvement by taking a step back and reconsider the what

defines the total wealth of investors. Unlevered factors are a middle ground between

the elusive yet fundamental aggregate consumptions and accessible yet ill-defined levered

factors. On the contrary, debts are equivalent of shorting put options of the firm’s assets

and are by construction less volatile. Coupled with the lack of comprehensive day-by-day

data and noises, they are not the best instrument to study whether a return space at

a higher level is better at hosting factor-mimicking portfolios. Nevertheless, this paper

brings a broader implications in pricing other asset classes such as bonds and currencies.

Recent statistics-driven works sidestepped the problem caused by the large number

of potential flawed factors by redirecting the attention to “predicting” from “explaining”

the cross-sectional variations. For example, Gu, Kelly, and Xiu (2020) utilized various

machine learning techniques such as Deep Neural Networks and Random Forests that are

designed to tackle with the challenges from non-linearity and high-dimensionality. Feng,

Giglio, and Xiu (2020) adopted advanced statistical tools and raised the bar of marginal

importance for new factors to be admitted to an already lenthy list of factors. Kozak,

Nagel, and Santosh (2020) obtained a sparse SDF by aggregating information of 49 pre-

dictors into a small number of principal components. Although the literature has achieved

tremendous success in cross-sectional predictions, it seems we are not moving closer to
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the ultimate question of what are the fundamental sources of risks if we stop distin-

guishing the economically-founded factors from the spurious ones. We are guanranteed

an empirical success to find an ex post MVE portfolio in one sample, but it is unlikely

to be efficient in the next sample, ex ante or ex post. On the other hand, an ex ante

MVE SDF is unlikely to be efficient in any sample, but it is of the core interests of asset

pricing. The only solution is to impose some economically driven disciplines that explain

why certain predictors should matter. Therefore, this paper also sends a message that

a sparse SDF and the possibility to interpret the SDF is not mutually exclusive. Unlike

the aforementioned papers, I kept the characteristics intact, and the improvement of the

factor model simply comes from unlevering.

The idea that certain stock pricing anomalies might have unintendedly captured the

non-linear transformation of unlevered asset returns is not noval (e.g., Berk, Green, and

Naik, 1999; Carlson, Fisher, and Giammarino, 2004). Most works focus on one or two

specific anomalies and do not account for the non-linearity explicitly. Rather, they simply

include the leverage that is the moneyness of the underlying asset in the regression. Doshi

et al. (2019) on the other hand, unlevered the stock returns and found that the size

effect is weakened, while the value premium and the volatility puzzle virtually disappear.

However, their adoption of portfolio sortings and Fama and MacBeth (1973) (hereafter

“FMB”) regressions as the empirical strategy only permits tests of limited factors. They

unlever returns with a scalar computed from book value of debts, omitting the default risk

during their main analyses. Addressing these concerns, this paper, to my best knowledge,

is the first to jointly test a wide collection of characteristics-based unlevered factors

via an economically motivated Bayesian approach and do so by properly adopting the

Merton model in the unlevering process. I find evidence that the omission of the leverage

effect on returns has bigger implications beyond a couple of anomalies, and asset pricers

need to reconsider the shape of the SDF. As discussed, this paper also revisits the
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stream of literature on “the factor zoo” of stock pricing that usually provide statistical

interpretations (Gu, Kelly, and Xiu, 2020; Feng, Giglio, and Xiu, 2020). In contrast,

this paper makes an economically motivated attempt to reduce the dimensionality by

targeting the non-linearity introduced by the option-theoretic feature of equity. Despite

a small number of principal components of levered factors is sufficient to summarize

the cross-section (Kozak, Nagel, and Santosh, 2020), an equally sparse unlevered SDF

retains unaltered predictors thus offering ease to potential economic interpretations for

surviving factors. Last but not least, this paper also contributes to the expanding body

of literature within machine learning applications in empirical finance research (e.g., Gu,

Kelly, and Xiu, 2020; Bali et al., 2023). While most papers focus on the predictability

of security returns, this paper speculates about the shape of SDF via certain machine

learning techniques.

The remainder of the paper is structured as follows: Section I develops the theoretical

implication of constructing factor-mimicking portfolios in the levered return space while

they reveal risks on firms’ whole assets. Section II details the Bayesian approach to be

employed in characteristics-based SDF estimation. Section III describes the data and

the unlevering process of stock returns. Section IV reports and compares the empirical

results for levered and unlevered SDFs. Section V concludes.

I. Factor-Mimicking Portfolios in the Unlevered Space

A firm’s equities are call options of the firm’s underlying assets and the face value of

debts is the strike price. Risk premia on all debts, equities, and other derivatives such

as equities’ options are linked because all claims must earn the same compensation per

unit of risk. The relations among these risk premia are highly non-linear thus demanding

prudent deliberation when constructing a linear SDF from security returns. In most
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cases, these securities are merely instruments to the free cash flow of the same assets.

Most hypotheses on fundamental risks describe the exposure on a firm level, and these

securities are simply auxiliary. The simplest example is CAPM: it is the covariance with

respect to the marginal utility thereby the total wealth of an investor that determines the

price of an asset. In theory, a comprehensive measure of the total wealth includes stocks,

bonds, human capitals, currencies, real estates and so on. However, it is impossible to

make a strict empirical definition, nor can we observe such data that are remotely clean

enough to test the hypothesis on a frequent basis. Therefore it is conventional to settle

with broad-based stock portfolios such as NYSE and S&P500. One needs to realize that

this is a compromise and comes at a cost.

To illustrate why it matters, I borrow from the famous Coval and Shumway (2001)

that showed expected call returns non-linearly monotonically increase with the strike

price on top of underlying returns1.

Assuming the existence of an SDF that prices all assets with

1 = E [M · R] (1)

where R is the gross return of any asset, and M is the strictly positive SDF. M is high

in bad states of the world and low in good states. Denote v as the random variable of

the firm’s market value of assets on maturity date. If the firm’s face value of debt is B,
1Some papers in option pricing such as Christoffersen, Heston, and Jacobs (2013) and Schlag and

Sichert (2020) on the other hand suggested a hump-shaped relation. Despite their divergence in the
assumptions on the shape of SDF, there is consensus that the variation of the expected call return
against the strike price is non-linear. Besides, compared with the wide range of moneyness for options
written on equity, the financial leverage of a firm usually entails a single “strike” that is deeply in-the-
money, thus the descending phase of the hump-shaped curve would be less relevant for this paper. Given
the above reasons, I opt for this simple benchmark to clarify the leverage effect on asset returns.
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the expected excess equity return is

E[re(B)] = E[max(v − B, 0)]
E[M · max(v − B, 0)] − 1 . (2)

The derivative of expected excess equity with respect to the face value of debt can be

expressed as2

∂E[re(B)]
∂B

= −Cov [E(M |v), v − B|v > B]
(E [E(M |v)(v − B)|v > B])2 . (3)

For firm whose market value of assets negatively correlate with the SDF given that the

firm is solvent, the derivative is positive and increases with B. I consider the simplest

case just to demonstrate the non-linearity of E[re(B)] against B: the firm is perfectly

correlated with the market, CAPM holds in the asset market, and the firm stays solvent

at debt maturity. I approximate the utility growth rate by a linear function of the market:

M = β
u′(c1)
u′(c0)

(4)

≈ 1 − b (ra − E [ra]) (5)

= 1 − b
v − E [v]

V0
(6)

where V0 is the the firm’s present market value of assets; ra is the excess unlevered return;

and b0 is a positive coefficient. We can solve for b = E [ra] /Var [ra] by pricing ra itself

with the SDF. Inserting Equation (6) back to Equation (3) and imposing the solvent

condition gives
∂E[re(B)]

∂B
= V0

(V0 − B)2 E [ra] . (7)

It is evident that Equation (7) is positive and increases in B. Higher debts magnify the

required equity return of the firm at an accelerating rate.
2Coval and Shumway (2001) or Appendix A provide detailed derivation.
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Figure 1 illustrates the relations between expected equity return and financial leverage

under this framework. Similar figure is presented in classic textbook such as Berk and

DeMarzo (2007) during the discussion of capital structure.

Figure 1: Expected Returns and Leverage

This figure illustrates the general evolvement of the expected excess return of asset (ra), equity (re), and
debt (rd) as a firm levers up. x-axis is the financial leverage, defined as the the ratio of face value of debt
(B) over the sum of face value of debt and market capitalization (E). Expected levered equity return re

monotonically increases in financial leverage and does so at an accelerating rate.

The variation of re can be decomposed into systematic unlevered risk and nonlinear

representations of leverage risk. The former comes from the covariance between unlevered

return ra (the horizontal line) and the SDF, and manifests on Figure 1 as parallel move-

ments of ra along the y-axis. However, the latter, shown as the variation of re on top of

ra, captures additional compensations for equity holders bearing different leverage risks.

If the data generating process follows the unlevered SDF from Equation (5) but a levered

SDF M̃ = 1− b̃ (re − E [re]) is assumed, the flawed factor-mimicking portfolio would only

capture a fraction of the cross-sectional variation due to the non-linear relationship be-
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tween ra and re, attributing the rest to spurious anomalies. To see this, since all excess

returns in the economy can be priced with the beta representation E [r] = Cov [r, ra] · b

with a common price b, it is impossible to find b̃ such that E [r] = Cov [r, re] · b̃ also hold

for all assets due to the non-linearity between re and ra. As a result, an empirical asset

pricer might conclude an “anomaly”. To add to the challenge, simply including leverage

as a covariate does little to capture the leverage effect regardless of the curvature of re

or whether higher order terms in leverage are included3, because the relation between

leverage and stock returns depends on the sign of the asset risk premium, offsetting the

effect in the cross section. Therefore, a correct procedure of return unlevering is crucial

in mitigating the omission.

As in most factor models, one might as well make the opposite assumption that the

risk factors constituting the SDF are better approximated by the variation of levered

return re, in which case the unlevered asset would be deemed as the derivative instead.

That is, it is not inherently wrong to favor factors in the levered space per se. However,

neither assumption undermines the argument of non-linear transformation and thereby

possible spurious anomalies when the wrong set of returns is chosen to construct a lin-

ear factor model. In Section II, I entertain both possibilities by jointly estimating the

coefficients and comparing the OOS performance between 100 levered and unlevered char-

acteristics-based factors via the exact same Bayesian approach, in an effort to shed a light

on whether returns on asset or equity drive the SDF. In fact, “the true SDF”, if exists, is

almost certainly a mix in between. That said, I postulate most risks are on the firm-level

and both equity and debt holders are exposed indirectly. Many papers discussed possible

economic interpretations of stock return anomalies. For example, Carlson, Fisher, and

Giammarino (2004) proposed declining growth opportunities as an explanation for neg-
3Doshi et al. (2019) in a simulation study found neither leverage or its higher order terms is statistically

significant, and the R2s are very small.
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ative relation between size and expected returns. Through this channel, equity holders

are only exposed to the secondhand risk of diminishing growth by claiming a piece of the

firm’s future cash flow.

II. A Bayesian Approach for Factor Discipline

If the expansion of “the factor zoo” is partly due to the leverage effect discussed in

Section I, I should find significantly more characteristics-sparse SDF that yields better

performance in the unlevered return space than the levered one. This postulation neces-

sitates a regularization technique capable of addressing the joint assessment of numerous

factors within a high-dimensional context, while also accommodating filters to allow spar-

sity. Traditional portforlio sortings or FMB regressions struggle to accomplish these tasks.

Therefore, I employ the economically motivated Bayesian approach by Kozak, Nagel, and

Santosh (2020) (hereafter “KNS”) to regularize the fitting procedure. In this section, I

first lay the foundation of asset pricing with characteristics-based factors4 and introduce

the Bayesian approach, then discuss hypotheses under the framework.

A. Characteristics-Based Factor Model

Let rt denote the stack of N excess returns. The conditional pricing equation is:

0 = Et−1 [Mt · rt] . (8)

One can find the SDF in the linear span of rt (Hansen and Jagannathan, 1991):

Mt = 1 − a′
t−1 (rt − Et−1[rt]) . (9)

4Appendix B details the derivation.
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This representation of SDF is time-contingent. To derive an unconditional pricing equa-

tion, characteristics-based asset pricing models assume that loadings on the return shocks

vary proportionally to contemporaneous H firm characteristics (predictors):

at−1 = Zt−1b (10)

where Zt−1 is a N × H predictor matrix. One can further isolate the time-invariant

parameters (b) from predictor-weighted excess returns, known as factors (Ft):

Mt = 1 − b′Z ′
t−1 (rt − Et−1[rt]) (11)

= 1 − b′(Ft − Et−1[Ft]) . (12)

Each entry in Ft is a linear combination of excess returns weighted by one predictor.

Therefore, Ft is another collection of tradable excess returns, similar to rt such that

E[Mt · Ft] = 0 (13)

Even though Equation (9) and (12) are mathematically equivalent, the vast majority of

asset pricing literature focuses on the unconditional representation of SDF. It not only

condenses the cross section of myriad assets into characteristics-managed factors, but also

does so with time-invariant loadings.

It is obvious from Equation (11) why the selection between levered and unlevered

returns matters even if they span each other. Much of the existing literature backs their

choice of factors with theories motivating why corresponding characteristics should pre-

dict returns. Hence the predictor matrix Zt−1 is economically informative. Employing

a “wrong” set of returns in Equation (11) would require adjustments of Zt−1 to ap-

proximate “the true SDF”. One can either introduce new characteristics to Zt−1 while
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keeping existing ones unaltered, or operating on existing characteristics in Zt−1 (e.g.,

PCA) while keeping a lean dimension. The former brings about spurious factors, and the

latter obscures economic interpretations. These issues are even more relevant given the

non-relationship between levered and unlevered returns. Selecting a better set of returns

can alleviate both drawbacks.

Solving the system of Equation (12) and (13) produces the coefficient b of the factor

model:

b = Σ−1E [Ft] = (ΣΣ)−1 ΣE [Ft] (14)

where Σ ≡ E
[
(Ft − E [Ft]) (Ft − E [Ft])′

]
. b is the coefficients in a cross-sectional re-

gression of the factors’ population mean on its variance-covariance matrix. Empirically,

regressions of the sample equivalents are used to estimate the coefficients. If we define:

µ̄ = 1
T

T∑
t=1

Ft (15)

Σ̄ = 1
T

T∑
t=1

(Ft − µ̄) (Ft − µ̄)′ , (16)

the resulting estimator of b becomes:

b̂ = Σ̄−1µ̄ =
(
Σ̄Σ̄

)−1
Σ̄µ̄ . (17)

B. Economically Motivated Bayesian Model by KNS

The risk of overfitting becomes substantial when a large number of candidate factors are

considered. With the expansion of a factor model comes a higher propensity of picking

up noises and performing poorly OOS. Regularziation methods are needed for model

selection and mitigation of overfit. In the context of characteristics-based asset pricing

model, the main source of overfit comes from the sample mean estimator µ̂ even with
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long samples, not from covariance (Kozak, Nagel, and Santosh, 2020). Following KNS,

I proceed under the assumption that Σ̄ = Σ and tackle with the imprecision of µ̄ by

introducing a prior5:

µ ∼ N
(

0,
κ2

τ
Σ2
)

(18)

where τ = tr [Σ] is the trace of the variance-covariance matrix and κ governs the strength

of the prior. This prior implies an economically plausible notion that there exists a

connection between the first and second moments of factor returns. Specifically, Sharpe

ratios of factors associated with high-eigenvalue PCs should be higher than those associ-

ated with low-eigenvalue PCs6. It is statistically in line with many asset classes including

stock returns that a few high-eigenvalue PCs account for most return variance while the

contribution of the rest is neglegible.

With normal prior and likelihood, the Bayesian posterior mean and variance of b with

a sample size of T are7:

b̂ = (Σ + γI)−1 µ̄ (19)

Var(b) = 1
T

(Σ + γI)−1 (20)

where γ = τ
κ2T

. Compared with b̂ in Equation (17), Equation (19) shrinks cofficients

toward 0, similar to ridge regressions (Hastie et al., 2009). The effect is disproportionately

stronger for factors associated with low-eigenvalue PCs. In simpler words, the KNS

estimators are more intolerant toward coefficients of factors that “contribute” less to

the cross-sectional variations. κ (or equivalently, γ) regularizes the fitting process in

an economically plausible way. In fact, Equation (19) is the closed form solution to
5This family of priors is widely used in earlier literature. See Pástor (2000), Pástor and Stam-

baugh (2000), and Liechty, Harvey, and Liechty (2008).
6To see this, think of factors as orthogonized PCs and Σ−1/2µ ∼ N

[
0, (κ2/τ)Σ

]
.

7Inserting the Bayesian posteror µ̂ ∼ N
[
(γI + Σ)−1

µ̄, 1
T

(
Σ−1 + γΣ−2)−1

]
into Equaition (17).
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minimizing the HJ-distance (Hansen and Jagannathan, 1991) with L2 penalty:

b̂ = argmin
b

(µ̂ − Σb)′ Σ−1 (µ̂ − Σb) + γb′b . (21)

To implement the estimation, the value of κ is needed. Parameters like κ are called

hyperparameters in machine learning language. They control the behavior of a fitting

process and are not learned from data directly. Instead, they are tuned between sessions

for better OOS performance.

I adopt a standard K-fold cross-validation (CV) method for hyperparameter tuning.

(1) First, I divide the historical data into training and testing period, and further con-

tiguously divide training data into K equal subsamples; (2) Then, for each possible κ, I

compute b̂ applying Equation (19) for K − 1 of these subsamples and evaludate the OOS

performance on the single withheld subsample via R2
oos = 1 − [µ̄o − Σ̄ob̂][µ̄o − Σ̄ob̂]′/[µ̄′

oµ̄o]

where subscript o indicates sample moment from the withheld subsample; (3) Next, I

repeating this procedure K times, each time treating a different subsample as the OOS

data. I average the R2
oos across these K estimates; and (4) Finally, I choose the optimal

hyperparameter κ that generates the highest average of R2
oos and evaluate the real OOS

performance on the testing period.

Throughout the CV process, I chose K = 3 following KNS as a compromise between

the estimation error in b̂ and Σ̄o. Based on the prior (Equation (18)), κ has a natural

economic interpretation. It is the square root of the expected maximum squared Sharpe

ratio:

κ =
(
E
[
µΣ−1µ

]) 1
2 . (22)

Two optimal κ’s will be generated during the estimations of levered and unlevered factors.

A higher optimal κ not only suggests a better-behaved data as there is less necessity for

regularization (higher λ), but also represents a closer proximity to “the real SDF”, which
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by construction, signals the highest Sharpe ratio.

So far, the Bayesian approach shrinks coefficients to almost but not exact zero, keeping

all factors in the model. To reinforce my argument that spurious factors might arise from

constructing SDF with levered returns, another penalty to filter out certain factors is

desirable. I follow KNS and add an additional L1 penalty on top of L2:

b̂ = argmin
b

(µ̂ − Σb)′ Σ−1 (µ̂ − Σb) + γ2b
′b + γ1

H∑
i=1

|bi| . (23)

Due to the geometry of L1 norm, Equation (23) accomplishes automatic factor selection

without imposing that the SDF is necessarily sparse. In other words, the number of factors

with non-zero coefficients is another hyperparameter that is optimized through the CV

process and serves as an indicator of the comparison between levered and unlevered SDFs.

I solve the optimization problem in Equation (23) using LARS-EN algorithm (Zou and

Hastie, 2005)8.

C. Hypotheses

Note that the Bayesian approach does not necessarily impose penalties because optimal

hyperparameters are driven by OOS data. Therefore, I can employ the same approach

on different sets of factors built from levered and unlevered return spaces and compare

the data-revealed optimal hyperparameters that carry economic meaning. I will detail

factor building in Section III.

Since I argue that some factors are introduced to capture the non-existent anomalies

when levered factors do not faithfully reflect the economic theories, the same character-

istics-based factors from unlevered space should not survive the shrinkage.

Hypothesis 1 Cross-validated optimal number of factors with non-zero coefficients is
8My LARS-EN code is built upon KNS.
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smaller in unlevered SDF estimation than in levered SDF estimation under the Bayesian

approach with L1 and L2 penalty.

If unlevering stock returns brings us closer to “the true SDF”, implied MVE portfolio

should yield higher Sharpe ratio in the unlevered space. In the simplest case, if unlevered

market is a better proxy for the total wealth, it should have higher Sharpe ratio than

stock market, and serves a better benchmark for CAPM test.

Hypothesis 2 Unlevered SDF outperforms levered SDF OOS: 1. With optimal hyper-

parameters (κ and number of factors with non-zero coefficients), mean-variance-efficient

portfolio implied by unlevered model generates higher Sharpe ratio. 2. Alphas of various

portfolios are smaller when tested against unlevered market.

These hypotheses point to a sparser, better-performing SDF via unlevering.

III. Data and Unlevered Returns

I obtain daily stock returns from CRSP for all firms listed in the NYSE, AMEX, and

NASDAQ and supplement the data with the three-month Treasury-bill rate from FRED

as proxy for risk-free rate from which I calculate individual excess returns.

While there are at least hundreds of stock-level predictive signals in published re-

search9, I build upon the list of Green, Hand, and Zhang (2017) and Gu, Kelly, and

Xiu (2020) after weighing feasibility and quality. I construct a large set of 100 firm-level

characteristics based on the cross-section of stock returns literature10. Appendix C.1

lists the source to these characteristics. Data on firm equities, financial statements, and

macroeconomic variables is retrieved from CRSP, Compustat, and Amit Goyal’s personal
9Harvey, Liu, and Zhu (2016) studied 316 firm characteristics and common factors.

10I adapt the code from the Machine Learning Toolbox by Adrien d’Avernas, Martin Waibel, and
Chunjie Wang.
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website to build the characteristics. To obtain predictor matrix on a daily frequency, I

forward fill quarterly or annual accounting-based characteristics.

I exclude in the data financial firms with SIC code between 6000 and 6999 and small-

firms whose market caps are below 0.01% of the aggregate market11. My sample begins

in January 1951 and ends in December 2022 (71 years) and includes 7422 firms that on

average account for 74.4% of the total market value.

Finally, I employ the Merton model for unlevering. Unlevered returns are simply the

growth rates of market value of firms, defined as the sum of market value of equities

and debts. While equity values are readily available, data on market value of debt is

inaccessible. Under the assumption that the total value of a firm follows GBM, the

Merton model argues that the equity of the firm is a call option on the underlying value

of the firm with a strike price equal to the face value of the firm’s debt. Symbolically,

the Merton model is similar to the BSM option pricing model:

E = V N (d1) − e−rf T BN (d2) (24)

d1 = ln(V/B) + (rf + 0.5σ2
v)T

σv

√
T

(25)

d2 = d1 − σv

√
T (26)

where E is the market value of equity, V is the market value of the firm, σv and σe are

the volatilities of the aseets and equities, B is the face value of debt, T is debt’s time-to-

maturity, and rf is the instantaneous risk-free rate. The model also implies that σe and
11The illiquidity from small stocks might contaminate the analyses. Financial firms that can sustain

very high leverage might also drive the results. I include financial firms in robustness tests, in which the
sample expands to 8004 unique stocks and accounts for 90.3% of the total market value on average. The
results persist.
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σv are related by12:

σe =
(

V

E

)
N (d1)σv . (27)

The Merton model translates the volatility and market value of equity into those of firm’s

asset with Equation (24) and (27). All variables except σv and V are either known or can

be estimated: (i) E is the product of the firm’s shares outstanding and its current stock

price; (ii) σe is measured by the annualized realized volatility of daily stock returns in

each month; (iii) B is the sum of the firm’s current liabilities and one half of its long-term

liabilities; (iv) rf is measured by the annualized return on three-month Treasury-bill rate;

and (v) T = 1.13

Instead of solving this two-equation system directly, I implement the iterative proce-

dure proposed by Crosbie and Bohn (2003) and Vassalou and Xing (2004)14 to avoid a

statistical challenge posed by acute movements of market leverage: (1) I guess an initial

value of σ̃v = σe[E/(E + B)] and insert it into Equation (24) to infer the market value

of each firm Ṽ every day for the previous month; (2) I calculate the implied log return

on assets each day and and use the returns series to generate new estimates σ̃v; and

(3) Iterate the steps until σ̃v converges so the absolute difference in adjacent σ̃v’s is less

than 10−3.

Now that I obtain two panels of levered (re,t) and unlevered (ra,t), the last step before

implementing the estimation is to rank-normalize the predictor matrix Zt−1 such that each

factor in Ft is a zero-investment long-short portfolio. Following KNS, for each predictor
12Under the GBM assumption, the equity value satisfies the time-series process: dV = µvV dt+σvV dz

where dz is a standard Wiener process. It follows from Ito’s Lemma and Equation (24) that σe =(
V
E

)
∂E
∂V σv. In the BSM model, ∂E

∂V = N (d1).
13The estimations of T and B are also adopted by Chang, d’Avernas, and Eisfeldt (2021) and Gilchrist

and Zakraǰsek (2012). As a robustness check, I also apply another set of estimations following Bharath
and Shumway (2008) in which B is the total liabilities and σe is measured by annualized realized volatility
of daily stock returns in each year. The results remain consistent.

14Bharath and Shumway (2008); Gilchrist and Zakraǰsek (2012); Chang, d’Avernas, and Eisfeldt (2021)
also adopt this procedure.
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at each time, I obtain the rank-transformed value as the ratio of a firm’s rank in the

predictor over the number of firms. Next, I normalize the value by first demeaning the

rank-transformed predictor cross-sectionally then dividing the value by sum of absolute

deviations from the mean of all firms. Along with the characteristics-based factors, I add

an additional market factor to capture the level of risk premia.

I construct two panels of factors, Fe,t and Fa,t, to test under the Bayesian approach

discussed in Section II.

Fe,t = Z ′
t−1 · re,t (28)

Fa,t = Z ′
t−1 · ra,t (29)

Factors do not necessarily need to be tradable. To build an OOS trading strategy, in-

vestors can refer to the covariance between test assets and non-tradable factors. However,

tradable factors can directly translate into an MVE portfolio that can be easily evaluated

OOS. Trading on Fa,t is formidable as it requires access to the bonds as well as loans for

all public firms on a daily frequency. Given the challenge, I build an additional set of

tradable unlevered factors under the assumption that all debts are risk-free.

Fâ,t = Z ′
t−1 · [1N − Lt−1]′ · re,t (30)

where Lt is an N×1 book leverage matrix defined as the ratio of book liabilities to the sum

of book liabilities and market caps. This näıve approach assumes rd,t = 0N at all times.

Due to the cross-sectional heterogeneity of leverage, Fâ,t is nontrivial compared to Fe,t.

The risk-free investments in the long leg differ from short leg thereby essentially altering

the relative positions for levered stocks in the cross section: they are not proportional

to Zt−1 anymore. Doshi et al. (2019) adopted the method in their primary analyses and
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found it sufficient to subsume value and volatility premium.

Fa,t and Fâ,t stand for two extremes of market segmentation. While Fa,t assumes no

market segmentations between corporate equity and debt markets, Fâ,t assumes equity

holders have no access to the debt market at all. In practice, investors especially institu-

tional ones can build unlevered portfolios to certain extent. My analyses of Fâ,t and Fa,t

establish the boundaries for practical implications before I include bond in my analyses

for future research.

As discussed in Section II, falsefully constructing SDFs with levered returns might

have enticed asset pricers to either expand or transform the predictor matrix to capture

the non-linear transformation from leverage. The former corresponds to new factors and

the latter encompasses PCA. KNS found that applying a PC rotation on levered factors

lead to a more sparse SDF under the Bayesian approach. While the dimensionality is

tamed, transformations of economically motivated factors obscure the interpretations for

why certain predictors have powers whilst others do not. I facilitate the comparision by

considering the fourth set of factors: principal components of Fe,t:

Pe,t = Q′
eFe,t (31)

where Qe is the matrix of eigenvectors of Σe.

Eventually, my sample translates to four sets of characteristics-based factors (Fa,t,

Fe,t, Fâ,t, and Pe,t) from February 195115 to December 2022 on a daily frequency, built

from the same set of 100 predictors.
15Fa,t and Fâ,t start from October 1970 when firms first reported quarterly long-term debts on Com-

pustat.
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IV. Empirical Results

A. Model Selections

Table I: Optimal Hyperparameters under Singular- and Dual-Penalty

This table collects CV-implied optimal hyperparameters for eight sets of factors built from the same
100 anomalies. They are levered Fe, unlevered Fa, tradable unlevered Fâ, PCs of levered Pe (Panel
(a)), and their respective beta-neutral factors after orthogonizing against the market (Panel (b)). For
L2-only regularization, the hyperparameter is the root expected SR2 (κ); For L1-L2 regularization, the
hyperparameters include κ and the number of non-zero coefficients.

Panel (a): factors including market
Fe Fa Fâ Pe

L2 Penalty κ 0.69 0.77 0.45 0.69

L1-L2 Penalty κ 0.75 3.16 0.64 0.75
none-zero factors 88 5 42 27

Panel (b): beta-neutral factors
F̃e F̃a F̃â P̃e

L2 Penalty κ 0.46 0.36 0.24 0.46

L1-L2 Penalty κ 0.46 1.84 0.28 0.46
none-zero factors 99 3 40 59

Figure 2 presents the OOS R2 from the CV process for levered factors under both L2-only

and L1-L2 specifications with a range of hyperparameters.

When all factors are considered, the data calls for a sizable L2-shrinkage to explain

36.8% of the OOS variation (Panel (a)). The in-sample (IS) R2 decreases as I address

the concerns of overfitting by imposing higher strength of the penalty in the Bayesian

approach (lower λ and higher κ). As κ approaches 0, I use little IS information during

coefficients estimation thereby IS R2 converges to 0. On the contrary, relying too much
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(large κ) or too little (small κ) IS data leads bad OOS explanation. The model is

optimized when κ is set around 0.75.

Similar OOS R2 is only possible with the inclusion of most factors after allowing for

sparsity (Panel (b)). The optimal number of factors with non-zero coefficients is 88,

indicating little redundancy across factors. A small subset of these portfolios cannot

span the SDF regardless of optimal κ. Forcing a sparse model would risk losing pricing

information, shown as the significant drop in OOS R2 moving down the plot. Despite my

longer sample and wider collection of anomalies, the result is consistent with KNS that

showed all 49 factors they built survived the shrinkage.

Figure 2: Levered Factors Fe: OOS R2 under Singular- and Dual-Penalty

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 anomaly portfolios of daily levered stock returns from 1951 to 2022. Panel (a) only employs
L2 penalty of which the strength is measured by prior root expected SR2 (κ). Panel (b) also employs
L1 penalty of which the strength is measured by the number of retained factors. Hyperparameters
corresponding to highest OOS R2 are marked in the figure. Axes of hyperparameters are ploted on
logarithmic scale.

(a) L2 penalty (b) L1-L2 penalties

Figure 3 presents the OOS R2 under the same specifications and hyperparameters for

unlevered factors. The situation is quite different: OOS R2 is overall higher, indicating
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that unlevered factors in general carry more pricing information. While the optimal κ

under singular penalty is comparable to its levered counterparty (0.77 versus 0.69), it

is much higher under dual-penalty (3.16 versus 0.75), indicating that less supervision

from L2 penalty is needed when training unlevered factors: the concern of overfitting is

milder and there is less noise in this space. Most importantly, It only requires 5 factors

to peak the OOS R2 at 62.4%: market, 12-month momentum, return on equity, asset

growth, and revenue surprise. Compared with the optimized 88-factor levered SDF with

36.9% OOS R2, unlevered data calls for a much sparser SDF and explains a much higher

proportion of OOS variations. High R2 in the contour plot covers a much wider area

in the unlevered space than the levered one, implying some robustness in the vinicity

around the optimum specification: it is inconsequential whether to include or exclude

a few anomalies, or whether to have a slightly different root expected SR2. In other

words, additional factors provide little marginal benefit. In fact, they might introduce

unnecessary noises and impair IS data’s representativeness of the population, evidenced

by the growing optimal L2 penalty as more factors are included (the yellow strip runs

from the southeast to the northwest in Figure 3 Panel (b)). Summing up, unlevering

explains the cross-section better with fewer factors, suggesting some anomalies in the

literature are due to the omission of non-linear transformation of returns.

As for the two complementary sets of factors, the optimal SDF implied by Pe and Fâ

are more sparse than Fe but less so than Fa. This is in line with the theory that asset

pricers have been overstressing the predictor matrix Z while the choice of return space

r is understudied. Even though model improvement can be achieved through optimizing

Z (e.g. pricipal component or partial least squares), there is higher marginal gain by

simply unlevering the return, even just under the wildest assumption that all debts are

risk-free. The figures depicting their OOS R2 against different hyperparameters can be

found in Appendix D and key hyperparameters are collected in Table I.
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Figure 3: Unevered Factors Fa: OOS R2 under Singular- and Dual-Penalty

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 anomaly portfolios of daily unlevered asset returns from 1970 to 2022. Panel (a) only employs
L2 penalty of which the strength is measured by prior root expected SR2 (κ). Panel (b) also employs
L1 penalty of which the strength is measured by the number of retained factors. Hyperparameters
corresponding to highest OOS R2 are marked in the figure. Axes of hyperparameters are ploted on
logarithmic scale.

(a) L2 penalty (b) L1-L2 penalties

To facilitate the comparison between factor sets, Figure 4 extracts a slice from the

contour plots from Panel (b) of Figure 2 and 3 along the optimal κ for a given number of

non-zero coefficients. I also include tradable factors Fâ and PCs of levered factors Pe. As

the figure shows, OOS R2 only starts rising substantially for levered factors toward the

right of the plot when more than 10 factors are admitted. This is consistent with KNS

that showed it is never too much to add an additional factor proposed from the literature

into the levered SDF. There is little redundancy in the return space. In constrast, a

5-factor model accounts for most variation in the unlevered space and very sparse models

perform remarkably well. The marginal effect of adding an additional factor into the

SDF is trivial after the 5-factor model and its OOS R2 is much higher than that of

the levered SDF. An optimized unlevered 5-factor SDF explains more variation than a
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levered 88-factor SDF optimized under the same approach. Tradable unlevered factors

and PCs of levered factors are in between: sparse SDFs are sufficient to capture the

cross-sectional variation but the ceiling of OOS R2 is similar to the levered space. This

result is striking: it provides evidence that even if the stock market and the debt market

are entirely segmented and equity holders have zero access to the bond market, they

can still benefit from reweighting the economically-motivated portfolios with a leverage

matrix. Correctly accounting for firm-level, instead of stock-level risks, allows a small

number of factor-mimicking portfolios that can compete against complicated synthetic

portfolios built from conventional dimension reduction techniques. In reality, debt and

stock markets are neither entirely segmented nor integrated. Households have limited

access to the bond market, and institutions also to the loan market. Therefore, the

unlevered and tradable unlevered cases outline the bounds of benefit from pricing firms’

assets. It allows investors to construct an efficient portfolio from a mix of bonds and

stocks managed by several economically founded predictors.
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Figure 4: Entries of Predictors along Sparsity

This figure reports the maximum CV OOS R2 under dual-penalty as specifications allow higher number
of factors (x-axis). κ is optimized for respective number of non-zero coefficients.

As shown in Table I, market survives all L1 penalties regardlesss of the return spaces.

It captures the level of equity or asset risk-premia. To focus on understanding the fac-

tors that help explain cross-sectional anomalies, I orthogonize every characteristics-based

factors with respect to the market factor to examine the incremental power of other fac-

tors16. I denote these beta-neutral factors as F̃a,t, F̃e,t, F̃â,t, and P̃e,t respectively and

employ the exact same Bayesian methods.
16For each characteristics-based factor, I run a time-series regression on the market: Ft ∼ βMKTt +α;

then I calculate the corresponding beta-neutral factor as the remainder: F̃t = Ft − β̂MKTt. For levered
factor set Fe, the “market” refers to the value-weighted stock market returns; for unlevered set Fa, it
refers to the value-weighted unlevered asset returns.
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Figure 5 presents the OOS R2 from the CV process for levered and unlevered beta-

neutral factors under L1-L2 specifications with a range of hyperparameters. Similar to

their counterparties with market, the optimal L2 penalty (κ) is of the same order as 1.

While the data still calls for the inclusion of most levered factors, the optimal specification

in the unlevered space further reduces the dimensionality to three: 12-month momentum,

return on equity, and revenue surprise. There are two important differences from Fa.

First, the OOS R2 of F̂a nose dives across all specifications of hyperparameters after

orthogonizing against market. This sharp drop is not observed in the levered space.

In other words, including market in the factor model significantly enhances the OOS

performance in the unlevered space, highlighting its contribution to explain the cross-

sectional variation. Second, Panel (b) suggests that high OOS R2 area clusters in the low

dimension. In contrast, high OOS R2 area covers both low and high dimensions when

market is included: even though additional factors from Fa add little incremental benefit

on top of the optimized 5-factor model, adding more factors does not impede the OOS

prediction as long as a higher level of L2 is imposed. On the contrary, additional factors

from Fâ on top of the optimized 3-factor model negative impact in OOS prediction in

the beta-neutral case. The two differences are not observed in the levered space after

orthogonizing against the market. These results suggest that there is much less left

to explain on top of the market in the unlevered space, and many factors are mostly

composed of noises after removing the market element from the factors because including

them IS exacerbates the over-fitting problem. Figure D.3 in Appendix D reports the OOS

R2 of the two beta-neutral complementary sets of factors F̃â and P̃e.
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Figure 5: OOS R2 under Dual-Penalty for Beta-Neutral Factors

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 anomaly portfolios. Panel (a) depicts the result for beta-neutral levered factors (F̃e,t) and
Panel (b) for beta-neutral unlevered factors (F̃a,t). Hyperparameters corresponding to highest OOS R2

are marked in the figure. Axes are ploted on logarithmic scale.

(a) levered F̃e (b) unlevered F̃a

Similar to Figure 4, Figure 6 takes a cut in the contour plots of Figure 5 along the

ridge of maximal OOS R2 from bottom to top where we optimize L2 shrinkage (κ) for

each level of sparsity. I also include beta-neutral tradable factors F̃â and PCs of beta-

neutral levered factors P̃e. The trends persist compared to pre-orthogonizing cases across

all four sets of factors except for the unlevered one, where we see a decline after peaking at

3-factor model. On the contrary, OOS R2 keeps rising toward the right of the plot in the

levered space, that is, adding additional anomalies to existing models is always marginally

benefitial. In other three spaces, OOS R2 already peak when less than a dozen factors

are considered. Red (unlevered) and blue lines (levered) almost move in the opposite

directions: as data learns more levered factors, more unlevered data only adds noises to

the training. Again, beta-neutral unlevered factors have very limited explanatory power

for cross-sectional variations not only compared to beta-neutral levered factors, but also
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to pre-orthogonizing unlevered factors. These results point to a CAPM-like parsimonious

factor model in the unlevered space whilst levered factor models leave many anomalies

unanswered.

Figure 6: Entries of Predictors along Sparsity (Beta-Neutral)

This figure reports the maximum CV OOS R2 under dual-penalty as specifications allow higher number
of beta-neutral factors (x-axis). κ is optimized for respective number of non-zero coefficients.

Table I collects optimal hyperparameters for all the cases discussed, based on which I

build SDF-implied MVE portfolios to test later for their OOS performance. It is clear that

unlevering significantly reduce the dimensionality required to capture the cross-sectional

variation. On the other hand, the optimal L2 regularizations are on similar levels for all

return spaces, regardless of orthogonizing againt the market or not. In other words, there

is evidence that the expansion of “the factor zoo” might have partly arisen from ignoring
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the non-linearity of the leverage effect, but the noises that challenge µ’s evaluation persist

thus similar level of regularization is still necessary to deal with overfitting.

B. Factor Importance

Equation (20) gives a closed-form solution to the posteiror standard error for the coeffi-

cient estimates under the singular penalty of κ. I report top 10 most significant factors in

Table II. Market, momentums and ROE are robust across all factor sets. The t-statistics

are low for most anomalies, but what is important is the joint significance of these factors

and the explanatory power of the SDF constructed from them.
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Table II: Coefficient Estimates under L2 Penalty

Under a singular regularization of root expected SR2 (κ), this table lists top 10 of 100 coefficient estimates
and t-statistics corresponding to the CV-implied optimal prior, sorted by the absolute values of the t-
statistics. Panel (a) reports two key sets of levered and Merton-unlevered factors. Panel (b) reports two
complementary sets of factors: riskless-unlevered factors and PCs of levered factors.

Panel (a)
levered anomaly portfolios (Fe) unlevered anomaly portfolios (Fa)

predictors b t-stat predictors b t-stat
market 4.181 4.458 12-month momentum 4.737 2.696
12-month momentum 3.551 2.654 revenue surprise 4.283 2.260
1-month momentum -3.211 -2.451 return on equity 3.408 1.797
change in 6-month momentum -2.915 -2.129 market 2.013 1.774
change in shares outstanding -2.254 -1.521 6-month momentum 2.499 1.416
earnings to price 1.907 1.319 size (industry-adjusted) -2.395 -1.260
R&D to sales 1.646 1.190 change in employees (industry-adjusted) 2.209 1.156
return on equity 1.626 1.142 volatility of liquidity (share turnover) 2.193 1.151
maximum daily return -1.643 -1.123 change in 6-month momentum -1.978 -1.107
number of earnings increase 1.594 1.065 number of earnings increase 2.088 1.082

Panel (b)
tradable unlevered anomaly portfolios (Fâ) PCs of levered anomaly portfolios (Pe)

predictors b t-stat predictors b t-stat
market 1.871 2.321 PC3 4.973 5.213
12-month momentum 1.498 1.388 PC10 5.710 4.537
1-month momentum -1.091 -1.004 PC2 -1.530 -2.121
R&D to market capitalization 1.025 0.920 PC5 -2.224 -2.080
change in 6-month momentum -0.969 -0.882 PC12 2.361 1.814
return on assets 0.929 0.829 PC6 -1.740 -1.551
return on equity 0.886 0.787 PC25 1.963 1.374
change in shares outstanding -0.866 -0.766 PC28 -1.829 -1.271
return on invested capital 0.767 0.682 PC9 -1.550 -1.242
financial statement score 0.767 0.681 PC14 -1.618 -1.224

A rank of significance for factors when allowing for sparsity is more informative be-

cause it hints anomalies that might have been introduced to capture the non-linearity

between the levered and unlevered returns, rather than reflect the fundamental macroe-

conomic risk that affect the firm. Without a closed-form solution to the standard error
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of estimates under dual-penalty similar to Equation (20), I rank the factor importance

by their earliest entry into the the SDF when allowing higher dimensions (moving from

bottom to top in the contour plots in Figure 2 and 3). Comparing components in levered

and unlevered sparse SDFs of the same length, factors only appearing in the levered SDF

are either capturing economically-founded risks that are specific to the stock market, or

the non-linear return transformation from the leverage.

For example, Figure 7 shows the cutoffs above which the coefficient estimate of 1-

month momentum factor is non-zero and below which is zero. The lower the line is, the

more important the corresponding factor is. In this specific case, 1-month momentum

factor shall be included in all levered SDFs as long as more than 5 factors are allowed while

it would only be selected in unlevered SDFs with more than 20 factors on average. In

other words, unlevering drags 1-month momentum down the priority list. The rankings

can supplement the optimal coefficients estimates when comparing the Fa against Fe

regardless of whether the factor in question is non-zero at optimums: whether to have a 5-

or 6-factor model does not make a huge difference, especially when different sample might

hint slightly different optimums, but a major decrease in such ranking after unlevering

might imply close link to the leverage.
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Figure 7: Factor Selections: an Example

This figure demonstrates the cutoffs of 1-month momentum on top of the contour map of OOS R2 under
dual penalty for levered (Panel (a)) and unlevered (Panel (b)) factors. The coefficient estimate for the
specific factor is zero below the line and non-zero above the line.

(a) Levered Fe (b) Unlevered Fa

To quantify the shift in the cutoff, I rank each characteristic by its first entry into the

SDF when relaxing the number of admitted factors while setting κ corresponding to the

particular sparsity at optimum. Table III demonstrates top 10 factors for each return

spaces. For instance, most momentum-based factors appear in a sparse stock pricing

model but all are trivial after unlevering except 12-month momentum. On the other

hand, there is evidence that labor and profitability measures are of much higher ranks

among unlevered factors. Remember that empirical data requires 88 levered factors to

summarize the cross section, thus the result does not suggest labor and profitability are

not or less important for stock pricing.

Even though it is out of the scope of this paper to inspect the economic interpretation

behind how specific factors might have unintendedly capture the leverage effect or sta-

tistical errors accumulated from previous ill-defined factors, rather, I aim to measure the
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joint severity of the issue, this exercise still sheds a light on what anomalies need further

investigation on why they diverge in their ranks in asset versus stock pricing.

Table III: Factor Importance

This table reports top 10 factors ranked by the sequence of entry into the SDF when allowing for higher
number of non-zero coefficients under dual-penalty. Factors are selected to generate highest OOS R2

from 3-fold cross validation process with 100 candidate anomaly portfolios. The other hyperparameter
root expected SR2 (κ) is set at respective optimum for each number of non-zero coefficients.

earliest entry levered (Fe) unlevered (Fa) tradable unlevered (Fâ)
1 market market market
2 12-month momentum 12-month momentum 12-month momentum
3 1-month momentum revenue surprise change in shares outstanding
4 6-month momentum return on equity 1-month momentum
5 change in shares outstanding asset growth maximum daily return
6 sales to price employee growth rate earnings to price
7 industry momentum change in employees (industry-adjusted) asset growth
8 change in 6-month momentum earnings volatility return volatility
9 earnings to price maximum daily return change in 6-month momentum
10 maximum daily return size (industry-adjusted) industry momentum

C. OOS Performance of Market and SDF-implied MVE Portfolios

The discussion so far is restricted to hyperparameter tuning. Once κ and number of

factors are set to the optimums, I can proceed to build MVE portfolios and compare

their OOS performance. I re-estimate b̂ under the optimal hyperparameter excluding a

time window as testing period. Following KNS, I set the testing period from January

2005 to December 202217. The OOS MVE portfolo for each factor set is given by:

MV Et = b̂′ · Ft . (32)
17In robustness tests, I also set different start dates for the testing period: January 2000 and January

2010. The results persist.
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Figure 8 and Table IV report the cumulative log returns and the Sharpe ratios for markets

and SDF-implied MVE portfolios. Among the market returns, stock market has the

highest mean and volatility. This is no surprise because market portfolios long risky

securities and short risk-free rate. Equities as call options to firms assets, are exposed to

higher systematic risks.

Under classic asset pricing theory, MVE frontier is an equivalent representation of the

SDF thereby carrying the highest Sharpe ratio, thus I focus on comparing the Sharpe

ratio of key portfolios. In an bootstrapping exercise, I randomly resample returns of the

same length with replacement from all spaces and calculate their respective Sharpe ratio.

Repeating the step for 1000 times yields empirical standard errors, which I report in

the parentheses in Table IV. Levered stock market is less efficient than unlevered asset

market, with lower Sharpe ratio (0.46 versus 0.98). On the other hand, after we add

efficient factor-mimicking portfolios to the markets, the cumulative returns all drastically

increase, with unlevered efficient portfolio leading the rest. Interestingly, the Sharpe

ratio of unlevered efficient portfolio is not significantly different from unlevered market

portfolio (0.98 versus 0.89), indicating that the added 4 portfolios are not closer to “the

true SDF” than the market. In constrast, adding 87 addition factors would lift the Sharpe

ratio from stock market closer to what unlevered SDF implies and their difference is less

siginificant under the same bootstrapping method. However, on average levered SDF

consisting of 87 factors still underperforms compared to 5 unlevered factors that were

optimized under the same Bayesian methods (0.63 versus 0.89).
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Figure 8: Cumulative Return of Markets SDFs-implied MVE portfolios

This figure demonstrates the OOS daily cumulative logarithmic returns of Market (Panel (a)) and SDF-
implied MVE (Panel (b)) portfolios from 2005 to 2022 implied by four sets of SDFs in levered, unlevered,
tradable unlevered, and PCs of levered spaces. Model specifications (κ and number of factors) are trained
and optimized using data from 1951 to 2004.

(a) market portfolios (b) MVE portfolios

Table IV: OOS Cumulative Returns and Sharpe Ratios of MVEs and MKTs: 2005-2022

This table reports the cumulative logarithmic returns and Sharpe ratios of six portfolios: market and
levered SDF-implied MVE portfolios from levered, tradable unlevered and unlevered spaced. MVE
portfolios are optimized with sample from Feb 1951 to December 2004. The time priod is from January
2005 to December 2022. Empirical standard errors are derived from bootstrapping with 1000 resamples
and reported in the parentheses.

market portfolios implied MVE portfolios
levered tradable unlevered unlevered levered tradable unlevered unlevered

log cumulative return 1.31 1.11 1.10 3.30 4.36 6.60
Sharpe ratio 0.46 0.68 0.98 0.63 0.71 0.89
bootstrap s.e. (0.24) (0.24) (0.24) (0.23) (0.24) (0.25)

In the previous subsection, I briefly touched upon how unleverd space might bring

us closer to CAPM. Now I formally inspect the “abnormal returns” of MVE protfolios
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against various market benchmarks: the stock market return, Fama-French 4 factors re-

turns, the tradable unlevered asset market return, and the unlevered market return. If

my hypotheses are correct that many anomalies arise from constructing the SDF from

a misspecified levered return space, then assets’ α’s should drop in both economic scale

and statistcal significance along these benchmarkes that employ progressively better re-

turn space. I choose the MVE portfolios as testing assets to further investigate their

performance. The results are indeed consistent with my hypotheses.

Table V reports the annualized abnormal returns α’s (in %) from time-series regres-

sions of MVE portfolios on benchmark portfolios. Overall, the market portfolios vary

from least to most plausible (from top to bottom), as suggested by the drop of mag-

nitude and significance of α for all three testing assets; In addition, the testing assets

enjoy gradually higher abnormal returns (from left to right), as suggested by the increase

of magnitude and significance of α for all benchmark portfolios. To be more specific,

I unsurprisingly uncovered the anomalies studied extensively in stock pricing literature

by regressing a 88-factor model on market (1st row, 1st column). However, once you

correctly construct a new market return in the unlevered space, the anomaly vanishes

(3rd and 4th row, 1st column), thereby CAPM explains away many anomalies proposed

in the literature. There still exists unexplained returns: after all, this improved market

return cannot explain all the variations of the unleverd SDF implied MVE portfolios (last

row, last column). The good news is, I shrink the 87 cross-sectional anomalies into 4;

the bad news is: the unlevered alpha is material. Nevertheless, we are much closer to a

parsimonious CAPM specification after unlevering.
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Table V: Annualized α of MVE Portfolios against Various Benchmarks

This table measures the distance to CAPM by checking the annualized α (in %) from regressing SDF-
implied MVE portfolios on various market portfolios and Fama-French 4 factors (market, size, value,
and profitability). The SDFs are optimized on dual-penalty. MVE portfolio and benchmark returns are
normalized to have the same standard deviation as the aggregate stock market for better comparison.
Standard errors are reported in parentheses.

benchmarks \test assets levered MVE tradable unlevered MVE unlevered MVE

stock market 5.50∗ 6.43∗∗ 12.76∗∗∗

(3.03) (2.53) (3.95)

Fama-French 4 Factors 3.53∗ 4.99∗∗ 9.65∗∗∗

(2.03) (2.04) (2.70)

tradable unlevered market 2.31 3.11 11.16∗∗∗

(3.13) (2.76) (4.14)

unlevered market −1.92 −1.48 7.88∗∗∗

(3.20) (2.86) (4.10)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

V. Conclusion

Most economically founded stock pricing factors reveal risk profile on a firm level. Build-

ing factor-mimicking portfolios in the stock return space does not faithfully reflect the

fundamental macroeconomic risks that are proxies for the utility growth. Equities are

call options to the firms’ assets and the non-linear return structures can distort the risk

drivers suggested by theoretical works. The accumulated statistical errors might have in

part responsible to the neverending expansion of “the factor zoo”.

In this paper, I shrink the cross-sectional variations of levered stocks and Merton-un-

levered assets with the same set of 100 firm return predictors proposed by the literature.

I employ an economically-motivated Bayesian prior following Kozak, Nagel, and San-

tosh (2020) to regularize the high dimensions. Cross validated 5-factor unlevered SDF
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outperforms its 88-factor levered counterparty in sparsity, R2, OOS Sharpe ratio, as well

as market alphas. CAPM is more supported in the unlevered space, evidenced by a much

lower explanatory power of unlevered factors after orthogonizing against the market, and

a lack of improvement in the Sharpe ratio on top of asset market.

These results attribute a substantial number of stock pricing anomalies to the failure

of projecting the SDF onto the asset return space that truthfully reflects firm risks. It is

much more economically coherent to price assets, not stocks.
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Appendix A. Expected Excess Stock Return and Debt

This appendix details the derivation of the relation between expected excess stock return

and the face value of debt of a firm following Coval and Shumway (2001).

Assuming the existence of an SDF that prices all assets with:

1 = E [M · R] (A.1)

where R is the gross return of any asset, and M is the strictly positive SDF. Denote the

firm’s face value of debt as B and firm’s market value of assets on maturity date as v

that is a random varible followsing probability density distribution f(v). The expected

excess equity return is

E[re(B)] = E[max(v − B, 0)]
E[M · max(v − B, 0)] − 1 (A.2)

=

∫
v=B

(v − B)f(v)∂v∫
m=0

∫
v=B

m(v − B)f(v, m)∂v∂m
− 1 (A.3)

=

∫
v=B

(v − B) [1 − E[M |v]] f(v)∂v∫
v=B

(v − B)E[M |v]f(v)∂v
(A.4)

where f(v, m) is the joint distribution of the asset value and the SDF. Applying Leib-

niz inegral rule, the derivative of expected net returns with respect to the debt can be

I



expressed as

∂E[re(B)]
∂B

=

∫
v=B

(v − B)f(v)∂v ·
∫

v=B
E[M |v]f(v)∂v −

∫
v=B

(v − B)E[M |v]f(v)∂v ·
∫

v=B
f(v)∂v∫

v=B
(v − B)E[M |v]f(v)∂(s)

(A.5)

=

∫
v=B

v − B

1 − F (B)f(v)∂v ·
∫

v=B

E[M |v]
1 − F (B)f(v)∂v −

∫
v=B

(v − B)E[M |v]
1 − F (B) f(v)∂v[∫

v=B
(v − B) E [M |v] f(v)

1 − F (B)∂v

]2

(A.6)

where F (v) is the corresponding cumulative density for f(v). The numerator and de-

nominator of Equation (A.6) are composed of several conditional expectations that can

be rewritten as

E[M |v > B] · E[v − B|v > B] − E[E(M |v)(v − B)|v > B]
(E[E(M |v)(v − B)|v > B])2 (A.7)

that can be further simplified as

−Cov [E (M |v) , v − B|v > B]
(E[E(M |v)(v − B)|v > B])2 . (A.8)

When the SDF moves against the underlying firm’s market value of assets conditional on

the firm being solvent, the derivative is positive.
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Appendix B. Characteristics-Based Factor Model

I postulate a stochastic discount factor (SDF) that is projected to the payoff space X to

be a linear function of the shocks to the payoffs (Hansen and Jagannathan, 1991):

x∗ = E[x∗] + (x − E[x])′a . (B.1)

For any arbitrary asset whose payoff is x, its price p satisfies

p = E[xx∗] (B.2)

= E[x∗]E[x] + E[x(x − E[x]]′)a (B.3)

= E[x∗]E[x] + E [(x − E[x])(x − E[x])′] a (B.4)

= E[x∗]E[x] + Ωa . (B.5)

We can solve for a and insert it back to Equation (B.1):

a = Ω−1 (p − E[x∗]E[x]) (B.6)

x∗ = E[x∗] + (p − E[x∗]E[x])′ Ω−1 (x − E[x]) . (B.7)

Considering excess returns in the payoff space and pick a random zero-beta rate Rf = 1

gives

p = 0 (B.8)

x = r (B.9)

E(x∗) = 1
Rf

= 1 . (B.10)
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Denote the SDF as M , then Equation (B.7) becomes

M = 1 − E[r]Ω−1 (r − E[r]) . (B.11)

In a multiperiod world

Mt = 1 − a′
t−1 (rt − Et−1[rt]) (B.12)

where at−1 is the product of two expectations(Et−1[r] and E−1
t−1 [(r − E[r])(r − E[r])′]),

known at t − 1 before rt are realized at t. Characteristics-based asset pricing models

assume the loadings on the return shocks are linear combinations of return predictors

(e.g. firm characteristics and macroeconomic variables) and parametrize at−1 as

at−1 = Zt−1b (B.13)

where Z is a N × H predictors matrix. N is the number of assets in the economy and H

is the number of predictors. To clarify the decomposition, I assume only two predictors

in,t and jn,t in the economy where the subscripts represent the cross section and time

series respectively:

at−1 =



bii1,t−1 + bjj1,t−1

bii2,t−1 + bjj2,t−1

. . .

biiN,t−1 + bjjN,t−1


=



i1,t−1 j1,t−1

i2,t−1 j2,t−1

. . .

iN,t−1 jN,t−1


·

bi

bj

 = Zt−1b . (B.14)
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Inserting Equation (B.13) back to Equation (B.12), gives

Mt = 1 − b′Z ′
t−1 (rt − Et−1[rt]) (B.15)

= 1 −
[
bi bj

]
·

i1,t−1 i2,t−1 · · · iN,t−1

j1,t−1 j2,t−1 · · · jN,t−1




r1,t − Et−1[r1,t]

r2,t − Et−1[r2,t]

. . .

rN,t − Et−1[rN,t]


(B.16)

= 1 − b′

i1,t−1(r1,t − Et−1[r1,t]) + · · · + iN,t−1(rN,t − Et−1[rN,t])

j1,t−1(r1,t − Et−1[r1,t]) + · · · + jN,t−1(rN,t − Et−1[rN,t])

 (B.17)

= 1 − b′


i1,t−1r1,t + · · · + iN,t−1rN,t

j1,t−1r1,t + · · · + jN,t−1rN,t

−

i1,t−1Et−1[r1,t] + · · · + iN,t−1Et−1[rN,t]

j1,t−1Et−1[r1,t] + · · · + jN,t−1Et−1[rN,t]




(B.18)

= 1 − b′(Ft − Et−1[Ft]) . (B.19)

Each element in Ft is a linear combination of excess returns weighted by one predictor,

thus also tradable such that

E[Mt · Ft] = 0 . (B.20)

Solving the system of Equation (B.19) and (B.20) results in the coefficient b of the factor

model:

b = Σ−1E [Ft] = (ΣΣ)−1 ΣE [Ft] (B.21)

where Σ ≡ E
[
(Ft − E [Ft]) (Ft − E [Ft])′

]
. Empirically, b is the coefficients in a cross-

sectional regression of the factors’ population mean on its variance-covariance matrix.

In a special case, demeaning Zt−1 cross-sectionally converts factors Ft into zero-in-

vestment long-short portfolios since i1,t−1 + i2,t−1 + · · · + iN,t−1 = 0.
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Appendix D. Figures

Figure D.1: Tradable Unevered Factors Fâ: OOS R2 under Singular- and Dual-Penalty

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 anomaly portfolios of daily tradable unlevered asset returns from 1970 to 2022. Panel (a)
only employs L2 penalty of which the strength is measured by prior root expected SR2 (κ). Panel
(b) also employs L1 penalty of which the strength is measured by the number of retained factors.
Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes of hyperparameters
are ploted on logarithmic scale.

(a) L2 penalty (b) L1-L2 penalties
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Figure D.2: Principal Components Pe: OOS R2 under Singular- and Dual-Penalty

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using the PCs of 100 anomaly portfolios of daily unlevered asset returns from 1951 to 2022. Panel
(a) only employs L2 penalty of which the strength is measured by prior root expected SR2 (κ). Panel
(b) also employs L1 penalty of which the strength is measured by the number of retained factors.
Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes of hyperparameters
are ploted on logarithmic scale.

(a) L2 penalty (b) L1-L2 penalties
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Figure D.3: OOS R2 under Singular- and Dual-Penalty for Beta-Neutral Factors

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 anomaly portfolios. Panel (a) depicts the result for beta-neutral tradable levered factors (F̃ê)
and Panel (b) for beta-neutral PCs of levered factors (P̃e). Hyperparameters corresponding to highest
OOS R2 are marked in the figure. Axes are ploted on logarithmic scale.

(a) tradable unlevered F̃ê (b) PCs of levered P̃e
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