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Suppose two Bayesian agents each learn a generative model of the same environment. We will
assume the two have converged on the predictive distribution (i.e. distribution over some observables
in the environment), but may have different generative models containing different latent variables.
Under what conditions can one agent guarantee that their latents can be faithfully expressed in
terms of the other agent’s latents?

We give simple conditions under which such translation is guaranteed to be possible: the nat-
ural latent conditions. We also show that, absent further constraints, these are the most general
conditions under which translatability is guaranteed.

I. BACKGROUND

When is robust translation possible at all, between agents with potentially different internal concepts, like e.g.
humans and A, or humans from different cultures? Under what conditions are scientific concepts guaranteed to carry
over to the ontologies of new theories, (e.g. as general relativity reduces to Newtonian gravity in the appropriate
limit?) When and how can choices about which concepts to use in creating a scientific model be rigorously justified,
like e.g. factor models in psychology? When and why might a wide variety of minds in the same environment converge
to use (approximately) the same concept internally?

These sorts of questions all run into a problem of indeterminacy, as popularized by Quine[I]: Different models can
make exactly the same falsifiable predictions about the world, yet use radically different internal structures.

On the other hand, in practice we see that

e Between humans: language works at all. Indeed, babies are able to learn new words from only a handful of
examples, therefore from an information perspective nearly all the work of identifying potential referents must
be done before hearing the word at all.

e Between humans and Al: today’s neural nets seem to contain huge amounts of human-interpretable structure,
including apparent representations of human-interpretable concepts. [2]

e Between Al systems: the empirical success of grafting and merging[3], as well as the investigation by Huh et al.
(2024)[M], suggests that different modern neural nets largely converge on common internal representations.

Combining those, we see ample empirical evidence of a high degree of convergence of internal concepts between
different humans, between humans and Al, and between different Al systems. So in practice, it seems like convergence
of internal concepts is not only possible, but in fact the default outcome to at least a large extent.

Yet despite the ubiquitous convergence of concepts in practice, we lack the mathematical foundations to provide
robust guarantees of convergence. What properties might a scientist aim for in their models, to ensure that their
models are compatible with as-yet-unknown future paradigms? What properties might an Al require in its internal
concepts, to guarantee faithful translatability to or from humans’ concepts?

In this paper, we’ll present a mathematical foundation for addressing such questions.

II. THE MATH
A. Setup & Objective

We'll assume that two Bayesian agents, Alice and Bob, each learn a probabilistic generative model, M A and MB
respectively. Each model encodes a distribution P[X, A’|M’] over some “observable” random variables X and some
“latent” random variables A*. Each model makes the same predictions about observables X, i.e.

Y : P[X = z|M*4] = P[X = 2|MP] (Agreement on Observables)

* |https://www.lesswrong.com/users/johnswentworth; Contact: johnswentworth@gmail.com
T https://www.lesswrong.com/users/david-lorell; |Contact: d.lorell@yahoo.com
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However, the two generative models may use completely different latent variables A4 and A® in order to model the
generation of X (thus the different superscripts for A). Note that there might also be additional observables over
which the agents disagree; i.e. X need not be all of the observables in agents’ full world models.

Crucially, we will assume that the agents can agree (or converge) on some way to break up X into individual
observables X1, ..., X,. (We typically picture Xi,..., X,, as separated in time and/or space, but the math will not
require that assumption.)

We require that the latents of each agent’s model fully explain the interactions between the individual observables,
as one would typically aim for when building a generative model. Mathematically, Xi,...,X,, 1L |A} M* (read
“X1, ..., X,, are independent given A* under model M*”), or fully written out

Vi,z, X' P[X = z|A" = X', M| = [[ PIX; = 2,|A" = X', M'] (Mediation)
J

Given that Alice’ and Bob’s generative models satisfy these constraints (Agreement on Observables| and [Mediation|),
we’d like necessary and sufficient conditions under which Alice can guarantee that her latent is a stochastic function of
Bob’s latent. In other words, we’d like necessary and sufficient conditions under which Alice’ latent A4 is independent
of X given Bob’s latent AP, for any latent which Bob might use (subject to the constraints). Also, we’d like all of
our conditions to be robust to approximation.

We will show that:

e Necessity: In order to provide such a guarantee, Alice’ latent A4 must be a “natural latent”, meaning that it
satisfies [Mediation| plus a [Redundancy| condition to be introduced shortly.

e Sufficiency: If Alice’ latent A4 is a “natural latent”, then it can be used to construct a new latent A4 (via the
equation discussed later) which achieves the guarantee and has the same joint distribution with X
as A

e Both of the above are robust to approximation.

B. Notation

Throughout the paper, we will use the graphical notation of Bayes nets for equations. While our notation technically
matches the standard usage in e.g. Pearl|5], we will rely on some subtleties which can be confusing. We will walk

through the interpretation of the graph for the condition to illustrate.
The condition is shown graphically in Figure [I] . The graph is interpreted as an equation stating
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FIG. 1. Thecondition under the i*" model, graphically. A distribution P[X1, ..., Xn, A"] “satisfies” this graph if and
only if it satisfies the factorization P[X1, ..., Xn, A'] = P[A']T]; P[X;[A"].

that the distribution over the variables factors according to the graph - in this case, P[X, A’] = P[A'] [, P[X;|A’].
Any distribution which factors this way “satisfies” the graph. Note that the graph does not assert that the
factorization is minimal; for example, a distribution P[X1, ..., X,,, A?] under which all X; and A? are independent -
ie. P[X1,..., Xn, A"l = P[A'|[]; P[X;] - satisfies all graphs over the variables X, ..., X;, and A’, including the graph
in Figure

Besides allowing for compact presentation of equations and proofs, the graphical notation also makes it easy to
extend our results to the approximate case. When the graph is interpreted as an approximation, we write it with an
approximation error € underneath, as in figure

In general, we say that a distribution P[Y7,...,Y;,] “satisfies” a graph over variables Y7, ..., Y;, to within approximation
error € if and only if € > Dy (P[Y1, ..., Y[ [T; P[Y}|Ypa(s))), where Dy is the KL divergence. We will usually avoid
writing out these inequalities explicitly.



FIG. 2. The condition under the i** model, graphically with approximation e. A distribution P[X7, ey Xy AY]
“satisfies” this graph (including the approximation) if and only if it satisfies e > Dxr (P[A", X][|P[A]T]; P[X;]A"]).

C. Foundational Concepts: Mediation, Redundancy & Naturality

Mediation and redundancy are the two main foundational conditions which we’ll work with.

Readers are hopefully already familiar with mediation. We say a latent A “mediates between” observables X1, ..., X,
if and only if X3, ..., X,, are independent given A. Intuitively, any information shared across two or more X;’s must
“go through” A. We call such a A a mediator. Canonical example: if Xy, ..., X, are many rolls of a die of unknown
bias A, then the bias is a mediator, since the rolls are all independent given the bias. See figure [I] for the graphical
representation of mediation.

Redundancy is probably less familiar, especially the definition used here. We say a latent A’ is a “redund” over
observables X1, ..., X,, if and only if we can remove any one X; from X and still have the same information about
A e Xj — X; — A’ for all j, where X; denotes all variables X; except for X;. Though most cases of interest are
approximate, the redundancy condition in the exact case means:

Vj,z, N : PIN =X, X =] = P[A' = X'|X = z]P[X = z] = P[\' = X'|X; = 2;]P[X = 1] (Redundancy)

Intuitively, all information about A’ must be redundantly represented across at least two X’s, so that any one X; can
be dropped without any loss of information about A’. Canonical example: if X1, ..., X,, are pixel values in a picture
of a bike, and A’ is the color of the bike, then A’ is a redund, since we can still tell what color the bike is even if any
one (or few) pixels of the image are hidden. See [3| for the graphical representation of the redundancy condition.
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FIG. 3. The graphical definition of redundancy: A’ is a “redund” over X1, ..., X, if and only if P[X, A’] satisfies the graph for
all j. Intuitively, it says that one can drop any one element of X and still have the same information about A’

We'll be particularly interested in cases where a single latent is both a mediator and a redund over Xy, ..., X,,. We
call mediation and redundancy together the “naturality conditions”, and we call a latent satisfying both mediation
and redundancy a “natural latent”. Canonical example: if X1, ..., X, are low level states of macroscopically separated
chunks of a gas at thermal equilibrium, then the temperature is a natural latent over the chunks, since each chunk
has the same temperature (thus redundancy) and the chunks’ low-level states are independent given that temperature
(thus mediation).

Justification of the name “natural latent” is the central purpose of this paper: roughly speaking, we wish to show
that natural latents guarantee translatability, and that (absent further constraints) they are the only latents which
guarantee translatability.



D. Core Theorems

We’ll now present our core theorems. The next section will explain how these theorems apply to our motivating
problem of translatability of latents across agents; readers more interested in applications and concepts than deriva-
tions should skip to the next section. We will state these theorems for generic latents A and A’, which we will tie
back to our two agents Alice and Bob later.

Theorem 1 (Mediator Bottlenecks Redund) Suppose that random variables X1, ..., Xp, A, and A’ satisfy three
conditions:

e Independent Latents: A < X — A’
o A Mediation: X1, ..., X,, are independent given A
e A" Redundancy: N — X5 — X; for all j
Then A" - A — X.
The graphical statement of Theorem [1|is shown in figure 4] including approximation errors. The proof is given in

Appendix
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FIG. 4. Graphical statement of Theorem 1

The intuition behind the theorem is easiest to see when X has just two components, X; and Xs. The mediation
condition says that the only way information can “move between” X; and X» is by “going through” A. The redundancy
conditions say that X; and X5 contain the same information about A’, so intuitively, that information about A’ must
have “gone through” A -i.e. all the information which X yields about A’ must also be present in A. Thus, A’ -+ A — X;
all information relevant to X in the redund must flow through the mediator, so the mediator bottlenecks the redund.

1. Naturality = Minimality Among Mediators

We're now ready for the corollaries which we’ll apply to translatability in the next section.

Suppose a latent A is natural over X, ..., X, - i.e. it satisfies both the mediation and redundancy conditions. Well,
A is a redund, so by Theorem [1} we can take any other mediator A” (subject to the independent latents condition)
and find that A - A” — X. So: A is a mediator, and any other mediator (subject to the independent latents
condition) screens off A from X. In this sense, A is the “minimal” mediator: any other mediator must contain at
least the information about X which A contains. We sometimes informally call such a latent a “minimal latent”.



Corollary 1.1 (Naturality — Minimality Among Mediators) Corollary is stated graphically; see Figure E
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FIG. 5. If A is a natural latent, it satisfies the redundancy condition. Given any other latent A" which satisfies the mediation
condition (and is independent of A given X) we have the three conditions necessary to apply Theorem 1, i.e. A” mediates
between A and X.

2.  Naturality = Mazimality Among Redunds

There is also a simple dual to “Naturality = Minimality Among Mediators”. While the minimal latent conditions
describe a smallest latent which mediates between X7, ..., X,, (subject to the independent latents condition), the dual
conditions describe a largest latent which is redundant across X, ..., X;, (subject to the independent latents condition).
We sometimes informally call such a latent a “maximal latent”.

Corollary 1.2 (Naturality =—> Maximality Among Redunds) Corollary is stated graphically; see Figure @

3. Equivalence of Natural Latents

If two latents A, A’ are both natural latents, then from Theorem (1| we trivially have both A’ - A — X and
A — A — X. In English: the two latents contain the same information about X. In that sense, the two are
equivalent.

However, two different natural latents could also contain different independent random noise. For instance, we can
take any natural latent over X, append to the latent a single coinflip independent of X, and the result will also be a
natural latent.
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FIG. 6. If A is a natural latent, it satisfies the mediation condition. Given any other latent A’ which satisfies the redundancy
condition (and is independent of A given X) we have the three conditions necessary to apply Theorem 1, i.e. A mediates
between A’ and X.

III. APPLICATION TO TRANSLATABILITY
A. DMotivating Question

Our main motivating question is: under what conditions on Alice’ model M and its latent(s) A4 can Alice
guarantee that A4 is a stochastic function of AP (i.e. A4 < AP < X, which is equivalent to A* — AP — X)), for
any model M and latent(s) A® which Bob might have?

Recall that we already have some restrictions on Bob’s model and latent(s): [Agreement on Observables| says
P[X|M?B] = P[X|M*], and says that Xy, ..., X,, are independent given A” under model M?".

Since Naturality —> Minimality Among Mediators, the natural latent conditions seem like a good fit here. If
Alice’ latent A? satisfies the natural latent conditions, then Minimality Among Mediators says that for any latent
A" satisfying mediation over X7, ..., X,, (subject to the independent latents condition), A4 — A” — X. And Bob’s
latent AP satisfies mediation, so we can take A” = AP to get the result we want... IF that pesky independent latents
condition is satisfied. And for that, we need a digression.

B. Under Which Model?

By assumption, both Alice’s and Bob’s models agree on the distribution of the observables P[X] := P[X|M*4] =
P[X|M?3]. The only degree of freedom their models have is therefore the distribution of latent(s) given observables,
i.e. the choice of P[A!|X, M?]. We can view any choice of P[A*|X, M| as defining the latent variable(s) A®. That
definition is the first step toward translating Alice’ latent A“ into Bob’s model (or vice-versa): Bob simply defines a
new latent A4 in his own model using the same defining distribution as Alice, i.e. P[A%|X, MB]:= P[A4|X, M4].



However, this still leaves one important degree of freedom: the distribution of X is locked in, the distribution of
A# given X is locked in, the distribution of A® given X is locked in, but there’s still (potentially) room for different
interactions between A4 and A® conditional on X.

To handle that degree of freedom, we will assume that A4 and AP are taken to be independent given observables
X, i.e. the two agents’ latents are related only via the observables. This “independent latents” condition is shown
graphically in figure [7}
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FIG. 7. That pesky independent latents condition: independence of A* and AP, conditional on X.

Note that Alice can always force satisfaction of the independent latents condition by construction: from whatever
latent A“ she originally uses, she can construct A4 by sampling from the distribution of A4 given X, using new
independent bits for any nondeterminism in the sampling function. Mathematically, A* is defined as a stochastic
function of X, with distribution

VAL AE 2 PIAY = M X = 2, AP = \P] = P[AY = MX = 1] (Construction)

Alternatively, as a special case, if A4 is a deterministic function of X then the independent latents condition is
automatically satisfied. And for purposes of our proofs, the approximate version of the independent latents condition
is sufficient, so if A“ is approximately a deterministic function of X (i.e. A“ has small entropy given X) then that
also suffices.

With the independent latents condition, there is no longer any “under which model?” ambiguity; we can unambigu-
ously write P[X, A%, AP] := P[X]P[A4|X, MA]P[AB|X, MPB]. If the independent latents condition is assumed only
approximately, then there is still some ambiguity, but any allowed choice requires a small Dg, between P[X, A4, AP]
and P[X]P[A%|X, MA|P[AB|X, MB].

C. Guaranteed Translatability

From here on out, we will assume that Alice’ and Bob’s latents satisfy the independent latents condition.

With that handled, we can now finally declare half of our main theorem for this paper. If Alice’ latent A4 is natural,
then it’s a stochastic function of Bob’s latent AZ, ie. A — AP — X (or equivalently, A4 < AZ < X). This is just
the Naturality = Minimality Among Mediators theorem from earlier.

Now it’s time for the other half of our main theorem: the naturality conditions are the only way for Alice to achieve
this guarantee. In other words, we want to show the converse of Naturality = Minimality Among Mediators: if
Alice’ latent A4 satisfies and for ANY latent A® Bob could choose (i.e. any other mediator) we have
A — AB — X then Alice’ latent must be natural.

The key to the proof is to notice that Xj, i.e. all of X except Xj, is always a mediator. So, Bob could choose
AB = X5 for any j. In order to achieve her guarantee, Alice’ latent A4 must therefore satisfy A4 — X; — X for
all j, which is equivalent to A4 — X; — X - ie. the redundancy condition. Alice’ latent already had to satisfy
the mediation condition by assumption, it must also satisfy the redundancy condition in order to achieve the desired
guarantee, therefore it must be a natural latent.

Theorem 2 (Guaranteed Translatability) The theorem is stated graphically; see ﬁgure@

In English, the assumptions required for the theorem are:

e The independent latents condition A4 <— X — AP (achievable either by or by Alice’ latent being
an approximately-deterministic function of X)
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FIG. 8. Graphical statement of Theorem 2

e The conditions: X1, ..., X,, are independent given A* under model M#, and same given A® under
model M?P

e The |Agreement on Observables| condition: P[X|M*4] = P[X|M?]

Under those constraints, Alice can guarantee that her latent A4 is a stochastic function of Bob’s latent A? (i.e.
A4« AB + X) if and only if Alice’ latent is a natural latent over X, meaning that it satisfies both the mediation
condition (already assumed) and the redundancy condition A* — X5 — X for all j.

Proof: the “if” part is just Naturality = Minimality Among Mediators; the “only if” part follows trivially from
considering A® = X; (which is always an allowed choice of AP).

IV. NATURAL LATENTS: INTUITION & EXAMPLES

Having motivated the natural latent conditions as exactly those conditions which guarantee translatability, we move
on to building some intuition for what natural latents look like and when they exist.

A. When Do Natural Latents Exist? Some Intuition From The Exact Case

For a given distribution P[X7, ..., X,,], a natural latent over X does not always exist, whether exact or approximate
to within some error €. In practice, the cases where interesting natural latents do exist usually involve approximate
natural latents (as opposed to exact), and we’ll see some examples in the next section. But first, we’ll look at the
exact case, in order to build some intuition.



Let’s suppose that there are just two observables X1, Xo. If A is natural over those two observables, then the
redundancy conditions say P[A, X] = P[A|X1]P[X] = P[A|X3]P[X], i.e. P[A|X1] = P[A]|X3] for all X5, X5 such that
P[X;, X3] > 0. This condition can be somewhat confusing at first, but we can express it more intuitively by defining
two functions:

° fl(xl) = ()\ — P[A = )\|X1 = 1‘1})
° fg(.’lﬁg) = ()\ — P[A = )\|X2 = QTQD

In other words, f; takes in a value of X;, and returns the entire distribution of A given X;. In terms of fi, fa, the
redundancy condition then says

f1 (Xl) = fQ(XQ) with probability 1 (1)

This is a deterministic constraint between X; and Xs.

While we won’t prove it here, it turns out that we can take A’ := f1(X1) = f2(X2), and A’ will also be a natural
latent (assuming the A which we used to construct fi, fo is an exact natural latent, as opposed to an approximate
natural latent). We’ll use A’ instead of A as our natural latent in the next step.

Next, the mediation condition. The mediation condition says that X; and X5 are independent given A’ - i.e. they’re
independent given the value of the deterministic constraint. So: assuming existence of a natural latent A, X; and X5
must be independent given the value of a deterministic constraint.

On the other hand, if X; and X5 are independent given the value of a deterministic constraint, then the value of
the constraint clearly satisfies the natural latent conditions.

That gives us an intuitive characterization of the existence conditions for exact natural latents: an exact natural
latent between two variables exists if-and-only-if the variables are independent given the value of a deterministic con-
straint. More generally, an exact natural latent over many variables exists if-and-only-if the variables are independent
given the value of some deterministic constraints over subsets of the variables.

B. Worked Quantitative Example of Theorem

Consider a biased coin with bias 6. Two individuals, Alice and Bob, each flip the coin 1000 times and compute the
median of their respective flips. For simplicity, we assume a uniform prior on 6 over the interval [0, 1].

Intuitively, if the bias 6 is unlikely to be very close to %, Alice and Bob will find the same median with high
probability. Let X; and Xs denote Alice’s and Bob’s 1000 flips, respectively, and let A represent the bias 6. Note
that the flips are independent given 6, satisfying the mediation condition of Theorem exactly. Let A’ be the median
computed by either Alice or Bob (assuming they are the same with high probability). Since the same median can be
computed with high probability from either X; or X5, the redundancy condition is approximately satisfied. Finally,
since the median is a deterministic function of X, the independent latents condition is satisfied exactly.

Theorem then implies that the bias approximately mediates between the median (either Alice’s or Bob’s) and the
coinflips X. To quantify the approximation, we first quantify the approximation on the redundancy condition (the
other two conditions hold exactly, so their €’s are 0). Taking A’ to be Alice’s median, Alice’s flips mediate between
Bob’s flips and the median exactly (i.e., A" = X; — X5), but Bob’s flips mediate between Alice’s flips and the median
(i.e., A" = X5 — X;) only approximately. The corresponding D, is given by:

Dy (P[X1, Xo, N']||P[X1]P[X2| X1 PN | X5]) = — Z P[X1, Xo]In P[A (X1)]| X5]
X1,X2
= E[H (A (X1)|X2)]

This is a Dirichlet-multinomial distribution, so it is cleaner to rewrite in terms of Ny := > X3, Ny := > X5, and
n := 1000. Since A’ is a function of Ny, the D, becomes:

:E[H(A/(N1)|N2)]

Writing out the distribution and simplifying the gamma functions, we obtain:
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1. .
P[Ns] = o (i.e., uniform over 0, ..., n)
P[N |N ] o F(n + 2)F(N2 + 1)F(TL — NQ + 1) F(Nl + NQ + 1)F(2TL - N1 - N2 + 1)
U T T+ DOV, + DT (n — Ny + 1) T(2n +2)
PIA'(N1) =0|No] = ) P[N1|Ny]
n1<500
PIN'(N1) =1|No] = ) P[N1| o]
n1>500

There are only 10012 values of (Ny, N2), so these expressions can be combined and evaluated using a Python script
(see Appendix [C|for code). The script yields H = 0.058 bits. As a sanity check, the main contribution to the entropy
should be when 6 is near 0.5, in which case the median should have roughly 1 bit of entropy. With n data points,
the posterior uncertainty should be of order ﬁ, so the estimate of 6 should be precise to roughly % ~ .03 in either

direction. Since @ is initially uniform on [0, 1], a distance of 0.03 in either direction around 0.5 covers about 0.06 in
prior probability, and the entropy should be roughly 0.06 bits, which is consistent with the computed value.
Returning to Theorem [} we have €; = 0, €3 = 0, and €3 ~ 0.058 bits. Thus, the theorem states that the coin’s true
bias approximately mediates between the coinflips and Alice’s median, to within 2(e; + €2 + €3) ~ 0.12 bits.
Exercise for the Reader: By tracking the €’s more carefully through the proof, show that, for this example, the
coin’s true bias approximately mediates between the coinflips and Alice’s median to within €5, i.e., roughly 0.058 bits.

C. Intuitive Examples of Natural Latents

This section will contain no formalism, but will instead walk through a few examples in which one would intuitively
expect to find a nontrivial natural latent, in order to help build some intuition for the reader. The When Do Natural
Latents Exist? section provides the foundations for the intuitions of this section.

1. Ideal Gas

Consider an equilibrium ideal gas in a fixed container, through a Bayesian lens. Prior to observing the gas, we might
have some uncertainty over temperature. But we can obtain a very precise estimate of the temperature by measuring
any one mesoscopic chunk of the gas. That’s an approximate deterministic constraint between the low-level states
of all the mesoscopic chunks of the gas: with probability close to 1, they approximately all yield approximately the
same temperature estimate.

Due to chaos, we also expect that the low-level state of mesoscopic chunks which are not too close together spatially
are approximately independent given the temperature.

So, we have a system in which the low-level states of lots of different mesoscopic chunks are approximately indepen-
dent given the value of an approximate deterministic constraint (temperature) between them. Intuitively, those are
the conditions under which we expect to find a nontrivial natural latent. In this case, we expect the natural latent to
be approximately (isomorphic to) temperature.

2. Biased Die

Consider 1000 rolls of a die of unknown bias. Any 999 of the rolls will yield approximately the same estimate of
the bias. That’s (approximately) the redundancy condition for the bias.

We also expect that the 1000 rolls are independent given the bias. That’s the mediation condition. So, we expect
the bias is an approximate natural latent over the rolls.

However, the approximation error bound in this case is quite poor, since our proven error bound scales with the
number n of observables. We can easily do better by viewing the first 500 and second 500 rolls as two observables.
We expect that the first 500 rolls and the second 500 rolls will yield approximately the same estimate of the bias,
and that the first 500 and second 500 rolls are independent given the bias, so the bias is a natural latent between
the first and second 500 rolls of the die. This view of the problem will likely yield much better error bounds. More
generally, chunking together many observables this way typically provides much better error bounds than applying
the theorems directly to many observables.
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8. Timescale Separation In A Markov Chain

In a Markov Chain, timescale separation occurs when there is some timescale T" such that, if the chain is run for
T steps, then the state can be split into a component which is almost-certainly conserved over the T steps and a
component which is approximately ergodic over the T steps. In that case, we expect both the initial state and 7"
state to almost-certainly yield the same estimate of the conserved component, and we expect that the initial state
and T*" state are approximately independent given the conserved component, so the conserved component should be
an approximate natural latent between the initial and T*" state.

V. DISCUSSION & CONCLUSION

We began by asking when one agent’s latent can be guaranteed to be expressible in terms of another agent’s latent(s),
given that the two agree on predictions about observables. We’ve shown that:

e The natural latent conditions are necessary for such a guarantee.
e The natural latent conditions ensure that such a guarantee can be achieved via a simple
e Both of the above are robust to approximation.

... for a specific broad class of possibilities for the other agent’s latent(s). In particular, the other agent can use any
latent(s) which fully explain the interactions between observables. So long as the other agent’s latent(s) are in that
class, and the first agent uses a natural latent constructed appropriately, the first agent’s latent can be expressed in
terms of the second for purposes of modeling the observables. Furthermore, for this particular class of other agent’s
latents, a natural latent is the only way to achieve such a guarantee.

These results provide a potentially powerful tool for many of the questions posed at the beginning.

When is robust translation possible at all, between agents with potentially different internal concepts, like e.g.
humans and AI, or humans from different cultures? Insofar as the agents make the same predictions about some parts
of the world, and both their latent concepts induce independence between those parts of the world, either agent can
ensure robust translatability into the other agent’s ontology by using a natural latent. In particular, if the agents are
trying to communicate, they can look for parts of the world over which natural latents exist, and use words to denote
those natural latents; the equivalence of natural latents will ensure translatability in principle, though the agents still
need to do the hard work of figuring out which words refer to natural latents over which parts of the world.

Under what conditions are scientific concepts guaranteed to carry over to the ontologies of new theories, like how
e.g. general relativity has to reduce to Newtonian gravity in the appropriate limit? Insofar as the old theory correctly
predicted at least some parts of the world, and the new theory introduces latents to explain all the interactions between
those parts of the world, the old theorist can guarantee forward-compatibility by working with natural latents over the
relevant parts of the world. This allows scientists a potential way to check that their work is likely to carry forward
into as-yet-unknown future paradigms.

When and why might a wide variety of minds in the same environment converge to use (approximately) the same
concept internally? While this question wasn’t the main focus of this paper, both the minimality and maximality
conditions suggest that natural latents (when they exist) will often be convergently used by a variety of optimized
systems. For minimality: the natural latent is the minimal variable which mediates between observables, so we
should intuitively expect that systems which need to predict some observables from others and are bandwidth-limited
somewhere in that process will often tend to represent natural latents as intermediates. For maximality: the natural
latent is the maximal variable which is redundantly represented, so we should intuitively expect that systems which
need to reason in ways robust to individual inputs will often tend to track natural latents.

The natural latent conditions are a first step toward all these threads. Most importantly, they offer any mathematical
foothold at all on such conceptually-fraught problems. We hope that foothold will both provide a foundation for
others to build upon in tackling such challenges both theoretically and empirically, and inspire others to find their
own footholds, having seen that it can be done at all.
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Appendix A: Graphical Notation and Some Rules for Graphical Proofs

In this paper, we use the diagrammatic notation of Bayesian networks (Bayes nets) to concisely state properties of
probability distributions. Unlike the typical use of Bayes nets, where the diagrams are used to define a distribution, we
assume that the joint distribution is given and use the diagrams to express properties of the distribution. Specifically,
we say that a distribution P[Y] “satisfies” a Bayes net diagram if and only if the distribution factorizes according to
the diagram’s structure. In the case of approximation, we say that P[Y] “approximately satisfies” the diagram, up to
some € > 0, if and only if the Kullback-Leibler divergence (D) between the true distribution and the distribution
implied by the diagram is less than or equal to e.

1. Frankenstein Rule
a. Statement

Let P[Xy,...,X,] be a probability distribution that satisfies two different Bayesian networks, represented by
directed acyclic graphs G; and Ga. If there exists an ordering of the variables X7, ..., X, that respects the topological
order of both G; and Gy simultaneously, then P[Xq,...,X,] also satisfies any ”Frankenstein” Bayesian network
constructed by taking the incoming edges of each variable X; from either G; or G3. More generally, if P[X1,..., X,]
satisfies m different Bayesian networks G, ..., G, and there exists an ordering of the variables that respects the
topological order of all m networks simultaneously, then P[Xy, ..., X,] satisfies any “Frankenstein” Bayesian network
constructed by taking the incoming edges of each variable X; from any of the m original networks.

We'll prove the approximate version, then the exact version follows trivially.

b. Proof

Without loss of generality, assume the order of variables respected by all original diagrams is Xi,...,X,,. Let

P[X] = [, P[Xi|Xpa,(#)] be the factorization expressed by diagram j, and let o(i) be the diagram from which the

parents of X; are taken to form the Frankenstein diagram. (The factorization expressed by the Frankenstein diagram
is then P[X] =[], P[Xi[Xpa, 1))
The proof starts by applying the chain rule to the Dk, of the Frankenstein diagram:

D1 (P[XH HP[XiIXpa(,(i)@)O = Dky (H P[X;| X<l HP[XﬂXpaam(i)])
= ZE {DKL ( [(Xi| X<ill| P[X; |Xpaa(i)(i)]):|

Then, we add a few more expected KL-divergences (i.e., add some non-negative numbers) to get:

< ZZE DKL X |X<2]||P[X‘ pa; (i) ])]

= ZDKL <P[X]|| HP[XJXpaj(i)})
< Zéj
Thus, we have
Dkt (P[XHHP[XiXpam)(i)]) < ZDKL (P[X ||HPX\ pa; (i) ]>
< Z'fj
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2. Stitching Rule

a. Statement
In the exact case, the Stitching Rule says:
Let P[X,Y, Z] be a probability distribution, and suppose that:
1. P[X,Y] satisfies a Bayesian network Gxy over variables X and Y.
2. P[Z,Y] satisfies a Bayesian network Gzy over variables Z and Y.
3. Y is a Markov blanket between X and Z in P[X,Y, Z], i.e., X L Z|Y.
4. Each variable Y; € Y is a child of variables in X in Gxvy, or a child of variables in Z in Gzy, but not both.

5. There exists an ordering of all variables in X, Y, and Z that respects the topological order of both Gxy and
G zy simultaneously.

Then, P[X,Y, Z] satisfies a “stitched” Bayesian network Gxyz constructed as follows:
e Each variable X; € X takes its parents from Gxy.
e Each variable Z; € Z takes its parents from Gzy .
e Each variable Y; € Y with a parent in X takes its parents from Gxvy.
e Each variable Y; € Y with a parent in Z takes its parents from Gy .

In the approximate case, we have:
Let P[X,Y, Z] be a probability distribution that approximately satisfies the conditions of the Stitching Rule for a

Markov Blanket, with:
e (Gxy satisfied up to exy.
o (G 7y satisfied up to ezy.
e Y being a Markov blanket between X and Z up to €pgnket-

Then, the “stitched” Bayesian network G xyz constructed according to the Stitching Rule is satisfied by P[X,Y, Z]
up to €xy + €2y + €pranket- Furthermore, if we have fine-grained bounds on the Dy, for individual variables in each
diagram, we can obtain a tighter bound on the Dy, of the “stitched” Bayesian network, similar to the more general

Approximate Frankenstein Rule.

b.  Proof

We begin the proof with the X <~ Y — Z condition:
eblanket > Drcr (P[X,Y, Z]|| PIX|Y|P[Y]|P[Z|Y])
= Dk (PIX,Y, Z]||P[X,Y]P[Z,Y]/P[Y])

At a cost of at most exy, we can replace P[X,Y] with [], P[(X,Y);|(X,Y)payy )] in that expression, and likewise
for the P[Z,Y] term. (You can verify this by writing out the Dg’s as expected log probabilities.)

P Y)i(X Y ) pary 0] TL PUZ,Y)il (2, Y ) a6
€blanket + €XY + €2y > Dk, <P[X, Y, Z]HHz I Jil )p XY(P)[]YI_][ I il )p 2 )]>

Notation:

e Yy denotes the components of Y whose parents are taken from the XY -diagram; Y,y denotes the components
of Y whose parents are taken from the ZY-diagram. (Together, these should include all components of Y'.)



14

f (X7 Y)paxy(i)]

e All products are implicitly over components of whatever variables they’re indexing - e.g., [[; P|
(which will appear shortly) is over components of Yxy .

® (X,Y)payy (i) denotes the parents of ¢ in the XY-diagram. Each such parent will be a component of X or Y,
which is why we're subscripting the pair (X,Y’). Likewise for similar expressions.

Recall that each component of Yy must have no X-parents in the XY -diagram, and each component of Yxy must
have no Z-parents in the ZY-diagram. Let’s pull those terms out of the products above so we can simplify them:

P, Yoy )il (4 Y ) pany ) TL PIY2v: Yoans
éblanket+EXy+€ZYZDKL<P[X7Y7Z]|| LI PIX, Yoov )l ooy 1L P2y Yy 0] >

IL PUZ Y2y )il(ZY pazy ] 11 P pazy )|/ PY]

Those simplified terms in combination with 1/P[Y] are themselves a Dy, which we can separate out:

= D r(PIXY, Z)[| T] PIX Y )il (X, Y ) pasy (4) HP (Z,Yzy)il(Z.Y )pary )])

+DKL(P Y ;WXY(i)])

> DKL(P[X7Y7Z]||HP[(X7YXY)i‘(X’Y)paxy HP Z YZY) |(Z7Y)pazy(i)])

The last line is the Dy, for the stitched diagram.

3. Factorization Transfer
a. Statement

Let P[X1,...,X,] and Q[X7,...,X,] be two probability distributions over the same set of variables. If Q) satisfies
a given factorization (represented by a diagram) and @ approximates P with an error of at most ¢, i.e.,

e > Dir(P||Q),

then P also approximately satisfies the same factorization, with an error of at most e:

e>DKL< [X1,..., X ||HPX| )

where X,,,(;) denotes the parents of X; in the diagram representing the factorization.

b.  Proof

As with the Frankenstein rule, we start by splitting our D, into a term for each variable:

DKL( HQ ZE DKL X |X<1]HQ[X |Xpa l)])]

Next, we subtract some more Dg’s (i.e., subtract some non-negative numbers) to get:

> Z [Drer(PIXi| X |QIXi| Xpa(i))] — B [Drr(PIXi| Xpa ()1 QIXi| X pa(i)])])

= ZE DKL (X, |X<1H‘P[X| ])]

( HHPX|W)
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Thus, we have

D (PIX]|QX]) = Dkr (P[XH HP[Xi|Xpa(i)]>

4. Bookkeeping Rule(s)
a. General Statement

If all distributions which exactly factor over Bayes net G also exactly factor over Bayes net G2, then:

Dk (P[X]‘

HP(Xi | Xpag, <i>)>

(2

I[P Xpaclm)) > Dkl <p[x]‘

K2

b. Proof

Let Q[X] =[], P(X; | Xpacl(i))' By definition, @ factors over GGy. Since all distributions which factor over G

also factor over Gs, it follows that @ also factors over Gs.

Now, we have:

QLX) = [T QX | Xpug, )

Thus:

Dy, <P[X]‘

HP(Xi | Xpacl(i))> = Dk (P[X]‘ HQ(Xi | Xpacz(i))>

By the Factorization Transfer Theorem, we have:

Dy, <P[X] ‘

HQ(Xi | Xpacz(i))> = Dk, (P[X]’ HP(Xi | XPacz(i>)>

Which completes the proof.



Appendix B: Graphical Proofs

The Mediator-Bottlenecks-Redund Theorem
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FIG. 9. Proof of the Mediator Bottlenecks Redund Theorem

Appendix C: Python Script for Computing Dg; in Worked Example

import numpy as np
from scipy.special import gammaln, logsumexp, xlogy

n = 1000

p_N2 = np.ones(n+1)/(n+1)

N1 = np.outer(np.arange(n + 1), np.ones(n + 1))

N2 = np.outer(np.ones(n + 1), np.arange(n + 1))

# 1logP[N1|N2]; we’re tracking log probs for numerical stability

1p_N1_N2 = (gammaln(n + 2) - gammaln(N2 + 1) - gammaln(n - N2 + 1) +
gammaln(n + 1) - gammaln(N1 + 1) - gammaln(n - N1 + 1) +

—e e ------ -
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gammaln(N1 + N2 + 1) + gammaln(2*n - N1 - N2 + 1) - gammaln(2+*n + 2))

# logP[\Lambda’ = O|N2] and logP[\Lambda’ = 1|N2]
lp_lam0_N2 = logsumexp(lp_N1_N2[:500], axis=0)
lp_laml_N2 = logsumexp(lp_N1_N2[500:], axis=0)

p-lamO_N2
p_laml_N2

np.exp(lp_lam0_N2)
np.exp(lp_laml_N2)

print(p_lamO_N2 + p_laml_N2) # Check: these should all be 1.0

# ... aaaand then it’s just the ol’ -p * logp to get the expected entropy E[H(\Lambda’) |N2]
H = - np.sum(p_lamO_N2 * 1lp_lamO_N2 * p_N2) - np.sum(p_laml_N2 * lp_laml_N2 * p_N2)
print(H / np.log(2)) # Convert to bits
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