

RealSeq®-AC miRNA Library Kit for Illumina® sequencing

Cat. No. 500-00012 500-00048

Table of Contents

l.	Overview
II.	RealSeq®-AC Kit Contents
III.	Warnings and Recommendations
IV.	User-supplied Reagents, Consumables, and Laboratory Equipment (not included)
V.	Input Requirements
VI.	Experimental Protocol
VII.	Appendix A: Thermocycler Programming 16
VIII.	Appendix B: Example Library Profile
IX.	Appendix C: Data Analysis
Χ.	Appendix D: Reverse Primer Index Sequences 19

For Research Use Only.

Information in this document is subject to change without notice.

REALSEQ BIOSCIENCES DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL REALSEQ BIOSCIENCES BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT REALSEQ BIOSCIENCES IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

NOTICES TO PURCHASER:

LIMITED LICENSE

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without prior written approval of REALSEQ BIOSCIENCES, Inc. For information on obtaining additional rights, please contact: support@realseqbiosciences.com.

This product is covered by issued and pending patents.

TRADEMARKS

RealSeq® is the Registered Trademark of RealSeq Biosciences, Inc. All other brands and names contained herein are the property of their respective owners.

RealSeq®-AC

I. Overview

Step 1. Adapter ligation

Step 2. Adapter blocking

Add: Incubate: Add: Incubate:

Blocking Agent 10 min at 65°C Blocking Enzyme 60 min at 37°C 60 min at 65°C 20 min at 65°C 20 min at 65°C

Step 3. Circularization

Add: Incubate:

RealSeq® Enzyme
RealSeq® Buffer

Incubate:
60 min at 37°C

Step 4. Dimer removal

Add: Incubate: Add: Incubate:

Dimer Removal 10 min at 37°C RealSeq® Beads 10 min at 37°C

Agent

Step 5. Reverse transcription

Add: Incubate: Add: Incubate:

RT Primer 5 min at 65°C RT Buffer 60 min at 42°C
RNase free water RT Enzyme
RNase Inhibitor

Step 6. PCR amplification

 Add:
 PCR:

 PCR Buffer
 30 sec at 94°C

 dNTPs
 10-22 Cycles

 FP and RP
 15 sec at 94°C

 PCR Polymerase
 30 sec at 62°C

 RNase free water
 15 sec at 70°C

 5 min at 70°C

Step 7. Size selection

SPRI Beads

Illumina Sequencing

support@realseqbiosciences.com www.realseqbiosciences.com

II. RealSeq[®]-AC Kit Contents

Core kit box (Store at -20°C) (Box 1)

Tube	Component	Tube	Component
RB	 RNA Buffer 	RTP	RT Primer
Α	 RealSeq[®] Adapter 	dNTP	dNTPs
RI	 RNase Inhibitor 	RTB	RT Buffer
LB	Ligation Buffer	RTE	RT Enzyme
L	Ligase	PB	PCR Buffer
BA	Blocking Agent	PP	 PCR Polymerase
BE	 Blocking Enzyme 	DRA	Dimer Removal Agent
BB	 Blocking Buffer 	AD	Adapter Dilution Buffer
RSE	 RealSeq[®] Enzyme 	+	miRNA Control
RSB	 RealSeq[®] Buffer 	W	RNase-Free Water

Primer box 1 (Store at -20°C) (Box 2)

Cat. No.	Tube	Component	
500-00012 / 48	FP	Forward Primer (FP)	
500-00012	RP1 - 12	Reverse Primers, Index 1 - 12*	
500-00048	RP1 - 24	Reverse Primers, Index 1 - 24*	

Primer box 2 (Store at -20°C) (Box 3) Only for 500-00048

Cat. No.	Tube	Component
500-00048	RP25 - 48	Reverse Primers, Index 25 - 48*

^{*} For sequences see Appendix C, page 18.

Beads (Store at +4°C)

Tube	Component	
В	RealSeq [®] Beads (+4°C)	
SPRI	SPRI Beads (+4°C)	

III. Warnings and Recommendations

- Do not use the kit past the expiration date.
- Do not remove **enzymes** from -20°C until immediately before use and return to -20°C immediately after use.
- Ensure the RealSeq[®] Adapter and miRNA Control are always on ice to minimize degredation.
- Vortex and centrifuge each component before use.
- Always have PCR tubes on ice when handling.
- **Do not** freeze RealSeq[®] Beads or SPRI Beads.
- For ease, thermocyclers can be pre-programmed with all the reactions for a continuous workflow. Go to Appendex A for a list of temperatures.

IV. User-supplied Reagents, Consumables, and Laboratory Equipment (not included)

- Sterile nuclease-free PCR tubes
- Sterile nuclease-free 1.5 ml tubes
- Magnetic stand for PCR tubes (e.g. Diagenode #B0400001)
- 96-well aluminum block
- 96-100% Ethanol (molecular biology grade)
- Bioanalyzer[®] DNA 1000 kit (Agilent #5067-1504) or Tape Station D1000 DNA kit (Agilent #5067-5582 & 5037-5583)
- Qubit[®] Fluorometer (ThermoFisher Scientific) and Qubit[®] dsDNA HS Assay Kit, 100 assays (Thermofisher Scientific #Q32851)

V. Input Requirements

- This kit was optimized using 100 ng of Human Brain Total RNA (ThermoFisher #AM7962).
- High quality total RNA with RNA Integrity Number (RIN) > 7 is recommended as input material.
- Using partially degraded RNA will result in a higher proportion of short sequencing reads (< 15 nt) that correspond to degraded rRNAs, as well as decreased overall percentage of miRNA reads.
- Not all RNA extraction and purification kits isolate small RNAs, users should confirm that the method used also isolates small RNAs.
- When preparing libraries for the first time we highly recommend using the included miRNA control to prepare a control library.
- To prepare a control library, use 1 μ l of the control miRNA instead of the RNA sample. See Appendix B (Figure 2) for an example library profile with the miRNA control.

Guidelines for different input amounts:

Input Amount	RealSeq®-AC Adapter dilution (per library)**	PCR Cycles
1 μg total RNA	none	10-13
100 ng total RNA*	1μl Tube A + 1μl Tube AD	13-16
10 ng total RNA	1μl Tube A + 1μl Tube AD	16-19
1 ng total RNA	1μl Tube A + 3μl Tube AD	19-22
1 μl miRNA Control	1μl Tube A + 1μl Tube AD	13

^{* 100}ng of total RNA is recommended. Higher amounts of RNA may enrich for other classes of small RNAs (i.e. piRNA, snRNA, and snoRNA)

^{**} For optimal libraries, prepare a new dilution for every start of the protocol. Re-using the dilutions may cause degradation of the adapter.

VI. Experimental Protocol

1. Adapter Ligation

- Heat thermal cycler to 70°C.
- Prepare separate PCR microtubes for each RNA sample.
- RNA samples can be added up to a volume of 3 μ l.

Reagent	Volume to add
RNA (1 µg to 1 ng)	up to 3 μl
RNA Buffer (RB)	3 µl*
RealSeq [®] Adapter (A)	1µl**
RNase Free Water (W)	Variable
Total Volume	7 μΙ

^{*}RNA Buffer (RB) is very viscous. Pipet slowly.

- Place all sample tubes into a thermal cycler at 70°C.
- Heat sample tubes for 2 minutes at 70°C and transfer to ice for at least two minutes.
- While the samples are still on ice, add the following reagents to the sample tube. Mix by pipetting and spin down.

Reagent	Volume to add
RNase Inhibitor (RI)	1 μΙ
Ligation Buffer (LB)	1 μΙ
Ligase (L)	1 μΙ
Total Volume	10 μΙ

 Run the ligation reaction in a thermal cycler with the following profile:

Step Type	Temperature	Time
Hold	25°C	60 min
Hold	65°C	5 min

Proceed immediately to next step (Adapter Blocking).

^{**}See Table in Input Requirements (Section V) for Adapter dilutions.

2. Adapter Blocking

- Thaw, vortex and spin Blocking Agent (BA).
- Add **2.5 μl** of **Blocking Agent (BA)** to each sample tube. Mix by pipetting and spin down.
- Incubate with the following profile:

Step Type	Temperature	Time
Hold	65°C	5 min
Step down*	65 to 37°C	Approx. 5 min

^{*}Step down from 65°C to 37°C at a rate of 0.1°C per second (approximately 5 mins).

• Add the following reagents to each sample tube. Mix by pipetting and spin down.

Reagent	Volume to add
Blocking Enzyme (BE)	1.1 µl
Blocking Buffer (BB)	6.4 µl
Total Volume	20 μΙ

• Run Blocking reaction in a thermal cycler with the following profile:

Step Type	Temperature	Time
Hold	37°C	60 min
Hold	65°C	20 min

• Proceed immediately to next step (Circularization).

or

Stopping Point: Alternatively libraries can be stored overnight at -20°C. To restart, thaw samples on ice before proceeding to next step.

3. Circularization

• Perform circularization by adding the following reagents to each sample tube. Mix by pipetting and spin down.

Reagent	Volume to add	
RealSeq [®] Enzyme (RSE)	1 µl	
 RealSeq[®] Buffer (RSB) 	1 µl	
Total Volume	22 μΙ	

• Place samples into a thermal cycler with the following profile:

Step Type	Temperature	Time
Hold	37°C	60 min

Proceed immediately to next step (Dimer Removal).

4. Dimer Removal

• When Circularization is complete, add 1 µl of Dimer Removal Agent (DRA) to each sample tube in the thermocycler. Mix by pipetting, and incubate in the thermocycler with the following profile:

Step Type	Temperature	Time
Hold	37°C	10 min

• Prepare **RealSeq**[®] **Beads** (Stored at +4°C)

WARNING: Do NOT use SPRI Beads!

- Thoroughly vortex the beads for at least 30 seconds.
- Pipet 20 µl of the bead suspension into a new PCR tube.
- Place the tube on the magnetic rack for 1 minute or until all the beads settle against the side of the tube.
- Remove and discard the supernatant.
- Immediately resuspend beads with all 23 μl from sample tube and incubate for 10 min at 37°C.
- Quicky spin down the tubes in a microcentrifuge, then place on a magnetic rack for 1 minute or until all beads settle against the side of the tube. Transfer 20 µl of supernatant into a clean PCR tube.
 - Proceed immediately to next step (Reverse Transcription).

5. Reverse Transcription

• Add the following reagents to each sample tube.

Reagent	Volume to add	
RT Primer (RTP)	2 μΙ	
dNTPs (dNTP)	2 μΙ	
Total Volume	24 μΙ	

- Incubate the samples at 65°C for 5 minutes. Chill on ice for at least two minutes and spin down.
- Add the following reagents to each sample tube:

Reagent	Volume to add	
RT Buffer (RTB)	4 µl	
RNase free Water (W)	9 μΙ	
RT Enzyme (RTE)	2 μΙ	
RNase Inhibitor (RI)	1 μΙ	
Total Volume	40 μΙ	

- Mix by pipetting and spin down.
- Place samples into a thermal cycler with the following profile:

Step Type	Temperature	Time
Hold	42°C	60 min
Hold	65°C	20 min

• Proceed immediately to next step (PCR Amplification).

or

Stopping Point: Alternatively libraries can be stored overnight at -20°C. To restart, thaw samples on ice before proceeding to next step.

6. PCR Amplification

• Prepare PCR reaction mix for each sample. Mix gently by inversion and spin down.

Reagent	Volume to add		
PCR Buffer (PB)	20 μΙ		
dNTPs (dNTP)	3 μΙ		
Forward Primer (FP)	7 μl		
PCR Polymerase (PP)	4 µl		
RNase Free Water (W)	19 µl		
Total Volume PCR Master Mix	53 µl		

- Add 53 µl of PCR reaction mix to each sample.
- Add 7 μl of Reverse Primer Index (Primer Box) to each sample. Mix by pipetting and spin down.
- Run samples in a thermal cycler with the following profile:

Step Type	Temperature	Time
HOLD	94°C	30 sec
CYCLE (10-22 cycles) (See Section V)	94°C	15 sec
	62°C	30 sec
	70°C	15 sec
HOLD	70°C	5 min

• Proceed immediately to next step (Size Selection).

or

Stopping Point: Alternatively libraries can be stored overnight at -20°C. To restart, thaw samples on ice before proceeding to next step.

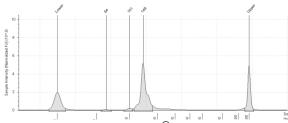
7. Size Selection

WARNING: For size selection use SPRI Beads, **DO NOT** use RealSeq*beads for size selection.

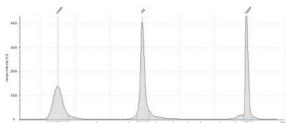
• Take out the SPRI Beads to the bench top at least 30 minutes before proceeding. This will ensure that the beads warm to room temperature before use.

Size selection with SPRI Beads

- Prepare 70% ethanol (500 µl per sample).
- Ensure SPRI Beads is at room temperature, and resuspend before use.
- Vortex and spin down each PCR reaction. Transfer 50 μl of sample to new PCR tubes.
- Add 70 µl of SPRI Beads to each sample. Mix reagent and PCR thoroughly by pipette mixing 10 times.
- Let the mixed samples incubate for 5 minutes at room temperature for maximum recovery.
- Place the samples on magnet until all the beads separate from solution (wait for the solution to clear before proceeding to the next step). (~3-6 minutes)
- Carefully remove the cleared solution from the tube and discard. Take care to not disturb the beads in the process.
- Without removing tube from magnet, add 200 µl of freshly prepared 70% ethanol to each sample and incubate for 30 seconds at room temperature. Remove the ethanol and discard. Repeat for a total of two washes.
- Briefly spin the tubes (~2,000 g) to collect the remaining liquid at the bottom of each tube. Place the tubes on the magnetic separation device for 30 seconds, then remove all remaining liquid with a pipette.
- Let the sample tubes rest open on the magnet at room temperature until the pellet appears dry and is no longer shiny. (~3-6 minutes)


- Once the bead pellet has dried, remove the tubes from magnet and add 12.5 μ l of RNase free water (W). Mix thoroughly by pipetting up and down to ensure complete bead dispersion.
- Incubate at room temperature for at least 5 minutes.
- Place the samples on a magnet for 3 minutes or longer, until the solution is completely clear.
- Transfer 10 μl of the clear supernatant containing purified PCR products from each tube to a new tube. Ensure that no beads follow the library during this step.
- Quantify library with Agilent Bioanalyzer[®]/TapeStation[®] and Qubit[®] Fluorometer.

VII. Appendix A: Thermocycler Programming


Thermocyclers can be programmed in advance for all reactions.

Step	Temper	Time	
1. Adapter Ligation	70°C		2 min
	ice		2 min
	25°C		60 min
	65°0	C	5 min
	65°0	2	5 min
2. Adapter Blocking	Step down (~5 min
	37°0	2	60 min
	65°(2	20 min
Optional Stopping Point	-20°	С	Overnight
3. Circularization	37°0	2	60 min
4. Dimer Removal	37°0	37°C	
	65°C		5 min
5. Reverse Transcription	ice		2 min
J. Neverse Transcription	42°C		60 min
	65°C		20 min
Optional Stopping Point	-20°	С	Overnight
	Step	Temp	Time
	HOLD	94°C	30 sec
6. PCR Amplification	CVCLE	94°C	15 sec
o. r ort Ampinioation	CYCLE (10-22 cycles)	62°C	30 sec
		70°C	15 sec
	HOLD 70°C		5 min
Optional Stopping Point	-20°C		Overnight

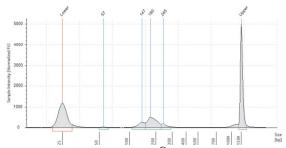
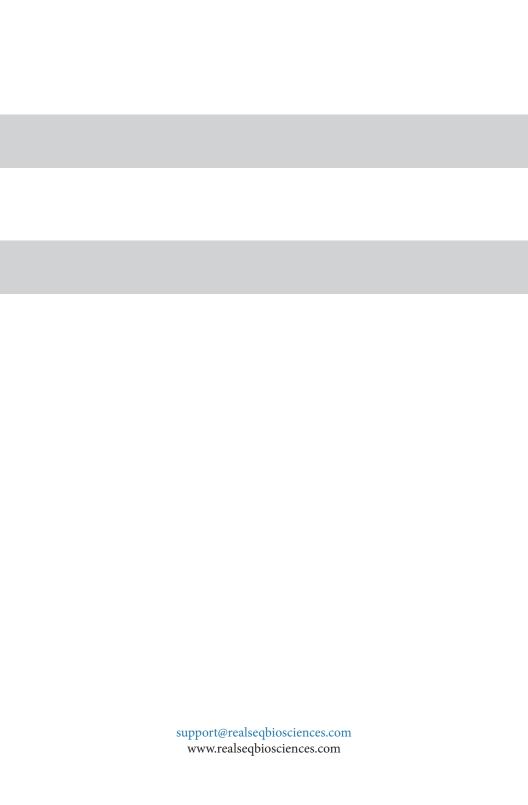

VIII. Appendix B: Example Library Profiles

Figure 1. Example D1000 TapeStation[®] profile from a library with an input of 100 ng Brain total RNA amplified by 10 cycles of PCR. miRNA sized libraries are approximately 141 bp.

Figure 2. Example D1000 TapeStation[®] profile from a library with an input of 1 μ l of miRNA control amplified by 13 cycles of PCR. miRNA control libraries are approximately 149 bp.

Figure 3. Example D1000 TapeStation[®] profile from a library with an input of 100 ng of MCF10A cells amplified by 16 cycles of PCR. The libraries are approximately 147-245bp.


IX. Appendix C: Data Analysis

- RealSeq®-AC libraries are completely compatible with bioinformatics tools designed for Illumina's TruSeq Small RNA libraries.
- The final product of a RealSeq $^{\! \rm I\! R}$ -AC library contains the adapter sequence TGGAATTCTCGGGTGCCAAGG
- This sequence needs to be trimmed from sequenced reads before mapping.
- One of the tools that can be used to perform trimming of adapter sequences is *cutadapt* (Martin et al. 2011).
- The following *cutadapt* command will trim adapter sequences and filter reads with inserts shorter than 15 nt.
 - cutadapt -u 1 -m 15 -a TGGAATTCTCGGGTGCCAAGG input.fastq > output.fastq
- After trimming the alignments can be performed as normal.

X. Appendix D: Reverse Primer Index Sequences

Tube	Sequence	Reported*	Tube	Sequence	Reported*
RP1	CGTGAT	ATCACG	RP25	ATCAGT	ACTGAT
RP2	ACATCG	CGATGT	RP26	GCTCAT	ATGAGC
RP3	GCCTAA	TTAGGC	RP27	AGGAAT	ATTCCT
RP4	TGGTCA	TGACCA	RP28	CTTTTG	CAAAAG
RP5	CACTGT	ACAGTG	RP29	TAGTTG	CAACTA
RP6	ATTGGC	GCCAAT	RP30	CCGGTG	CACCGG
RP7	GATCTG	CAGATC	RP31	ATCGTG	CACGAT
RP8	TCAAGT	ACTTGA	RP32	TGAGTG	CACTCA
RP9	CTGATC	GATCAG	RP33	CGCCTG	CAGGCG
RP10	AAGCTA	TAGCTT	RP34	GCCATG	CATGGC
RP11	GTAGCC	GGCTAC	RP35	AAAATG	CATTTT
RP12	TACAAG	CTTGTA	RP36	TGTTGG	CCAACA
RP13	TTGACT	AGTCAA	RP37	ATTCCG	CGGAAT
RP14	GGAACT	AGTTCC	RP38	AGCTAG	CTAGCT
RP15	TGACAT	ATGTCA	RP39	GTATAG	CTATAC
RP16	GGACGG	CCGTCC	RP40	TCTGAG	CTCAGA
RP17	CTCTAC	GTAGAG	RP41	GTCGTC	GACGAC
RP18	GCGGAC	GTCCGC	RP42	CGATTA	TAATCG
RP19	TTTCAC	GTGAAA	RP43	GCTGTA	TACAGC
RP20	GGCCAC	GTGGCC	RP44	ATTATA	TATAAT
RP21	CGAAAC	GTTTCG	RP45	GAATGA	TCATTC
RP22	CGTACG	CGTACG	RP46	TCGGGA	TCCCGA
RP23	CCACTC	GAGTGG	RP47	CTTCGA	TCGAAG
RP24	GCTACC	GGTAGC	RP48	TGCCGA	TCGGCA

^{*}Note: Reported are the sequences reported by the sequencer.

