A RESONANCE

. %,
G
.‘&.'0“ MBET

UBET Sports

UBET Sports Betting
Platform Audit Report

Blockchain, Emerging Technology, and Web?2
CYBERSECURITY PRODUCT & SERVICE ADVISORY

PUBLIC FINAL20

Audit_Report_UBET-SBP_FINAL_20

May 30, 2023 Ilan Abitbol: Initial draft

May 6, 2023 Ilan Abitbol: Added findings

May 8, 2023 Michat Bazyli: Added findings

May 9, 2023 Joao Simoes: Final draft

May 9, 2023 Charles Dray: Approved

May 9, 2023 Michat Bazyli: Revisions

Jul 28, 2023 Joao Simoes: Reviewed findings

Sep 6, 2023 Charles Dray: Published

Points of Contact Daniel J. Im Ubet Sports daniel.im@sportsinference.com
Alexander Kon- Ubet Sports alex.kondratskiy@sportsinference.com
dratskiy
Charles Dray Resonance charles@resonance.security
Luis Lubeck Resonance luis@resonance.security
Testing Team Ilan Abitbol Resonance ilan.abitbol@resonance.security

Joao Simoes Resonance joao.simoes@resonance.security
Michat Bazyli Resonance michal.bazyli@resonance.security

Copyright and Disclaimer

© 2023 Resonance Security, LLC. All rights reserved.

The information in this report is considered confidential and proprietary by Resonance and is
licensed to the recipient solely under the terms of the project statement of work. Reproduction
or distribution, in whole or in part, is strictly prohibited without the express written permission of
Resonance.

All activities performed by Resonance in connection with this project were carried out in accor-
dance with the project statement of work and agreed-upon project plan. It’s important to note that
security assessments are time-limited and may depend on information provided by the client, its
affiliates, or partners. As such, the findings documented in this report should not be considered a
comprehensive list of all security issues, flaws, or defects in the target system or codebase.

Furthermore, it is hereby assumed that all of the risks in electing not to remedy the security is-
sues identified henceforth are sole responsibility of the respective client. The acknowledgement and
understanding of the risks which may arise due to failure to remedy the described security issues,
waives and releases any claims against Resonance, now known or hereafter known, on account of
damage or financial loss.

2 © 2023 Resonance Security LLC

1 Document Control

Copyright and DisClaimer e e e e et e e e

2 Executive Summary
)220 1 T A= 2T

Repository Coverage and QUality.ooeiiiiiii i i i et et e e et
3 Target

4 Methodology
SEVEIITY RaAtiNG. ..ottt i it i e e e i
Repository Coverage and Quality Rating.c.oiiiiiiiii i et ettt

5 Findings

Frontrunning setParentPool() Results in Setting Malicious Parent Pool
Wages Of Bettors Can Be Replicated ..o e e et et
Bypass Calculations Of calcReturnAmount() On removeCollateral()cccooiiiia....
Integer Overflow On calcCostBasisReduction() Leads To Denial Of Service
Casting OV OW. . ottt e e e e et et e e e e i,
Numerous Small Buy Orders Lead TO FEE BYPaSS .. vovviriiiii it e e et et eieeeaas
Bets Can Be Fronrunned To Keep Denying Every Users Bets OnAMarket........................
Minimum Buy Amount CheCk ByPassviiiiiii i e et et e ettt
Missing Token Validation In ConditionalToken Can Lead To Unexpected Behavior
Insufficient Usage Of Pausable Functionality. ...
Immutable interfaceld Leads to Impossibility of Upgrading Interfaces................ccoovna...
Different Validation Conditions When ERC1155 Tokens Are Receivedcccvvviivninnn...
isHalted() Allows Miners To Gain Unfair Advantage.co.ouiriiiiiii i iiiiiaiaeaans
Missing Validation Of poolValue On batchRemoveChildShares()cccoviiiiiiiiiiinnnn...
No Usage Of OpenZeppelin’s Math Librarycoooiuiiiiii e

Unnecessary Initialization Of Variables With Default Values.............coiiiiiiiiiiiii ...

A Proof of Concepts

3 © 2023 Resonance Security LLC

Ubet Sports contracted the services of Resonance to conduct a comprehensive security audit
of their smart contracts between May 30, 2023 and June 9, 2023. The primary objective of the
assessment was to identify any potential security vulnerabilities and ensure the correct functioning
of smart contract operations.

During the engagement, Resonance allocated 3 engineers to perform the security review. The en-
gineers, including an accomplished professional with extensive proficiency in blockchain and smart-
contract security, encompassing specialized skills in advanced penetration testing, and in-depth
knowledge of multiple blockchain protocols, devoted 10 days to the project. The project’s test tar-
gets, overview, and coverage details are available throughout the next sections of the report.

The ultimate goal of the audit was to provide Ubet Sports with a detailed summary of the findings,
including any identified vulnerabilities, and recommendations to mitigate any discovered risks. The
results of the audit are presented in detail further below.

System Overview

Ubet Sports is a decentralized betting platform powered by smart contracts. The platform’s fun-
damental principle is that correct bet outcomes result in payouts, while incorrect ones do not.

This platform operates on Ethereum-compatible chains Polygon, using Solidity, the program-
ming language used for writing smart contracts.

The system is primarily composed of four key components: the end-user’s interface for placing
bets, the automated market maker (AMM) used to dynamically adjust odds and manage liquidity,
the various smart contracts that provide the infrastructure for betting and payouts, and the on-chain
registry which interfaces with the platform’s token management system.

As a general workflow, a user’s bet is forwarded to the appropriate MarketMaker contract through
the user interface. This process involves the use of a transaction, which is propagated through the
various components of the system. At the end of the chain, these transactions validate the outcome
of sports events and trigger appropriate payouts to users.

For every odd, a market is created and the odds can be modified based:

« On liquidity provided inside our targeted market;
- Wager size;

« External market odds.

Concerningthis last point, Ubet Sports platform utilizes a hybrid infrastructure combining blockchain

technology with traditional cloud services provided by AWS.

One of the critical aspects of this hybrid infrastructure is the updating of sports betting odds.
UBET Sports relies on external APIs such as LSportsRMQ and LSports Fixture REST API to access
real-time sports data and odds. This data is then processed on the platform’s internal AWS infras-
tructure to calculate the dynamic odds for each AMM.

4 © 2023 Resonance Security LLC

'VM‘ Repository Coverage and Quality

This section of the report has been concealed by the request of the customer.

5 © 2023 Resonance Security LLC

The objective of this project is to conduct a comprehensive review and security analysis of the
smart contracts that are contained within the specified repository.

The following items are included as targets of the security assessment:

- Repository:
- Hash: e26ddc8778662chac3b9751c06362493f58ee298

The following items are excluded:

External and standard libraries

Files pertaining to the deployment process

Financial-related attack vectors

UbetBucks, CashDistributor. This ERC20 token is used exclusively for testnet and test
mocking purposes and is upgradable. Any ERC20 token could be used for betting on the mar-
kets.

6 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/contracts

In the context of security audits, Resonance’s primary objective is to portray the workflow of
a real-world cyber attack against an entity or organization, and document in a report the findings,
vulnerabilities, and techniques used by malicious actors. While several approaches can be taken
into consideration during the assessment, Resonance’s core value comes from the ability to correlate
automated and manual analysis of system components and reach a comprehensive understanding
and awareness with the customer on security-related issues.

Resonance implements several and extensive verifications based off industry’s standards, such
as, identification and exploitation of security vulnerabilities both public and proprietary, static and
dynamic testing of relevant workflows, adherence and knowledge of security best practices, assur-
ance of system specifications and requirements, and more. Resonance’s approach is therefore con-
sistent, credible and essential, for customers to maintain a low degree of risk exposure.

Ultimately, product owners are able to analyze the audit from the perspective of a malicious actor
and distinguish where, how, and why security gaps exist in their assets, and mitigate them in a timely
fashion.

Source Code Review - Solidity EVM

During source code reviews for Web3 assets, Resonance includes a specific methodology that
better attempts to effectively test the system in check:

Review specifications, documentation, and functionalities

Assert functionalities work as intended and specified

Deploy system in test environment and execute deployment processes and tests
Perform automated code review with public and proprietary tools

Perform manual code review with several experienced engineers

Attempt to discover and exploit security-related findings

Examine code quality and adherence to development and security best practices

Specify concise recommendations and action items

0 ® N o g bk~ b

Revise mitigating efforts and validate the security of the system

Additionally and specifically for Solidity EVM audits, the following attack scenarios and tests are
recreated by Resonance to guarantee the most thorough coverage of the codebase:

Reentrancy attacks

Frontrunning attacks

Unsafe external calls

Unsafe third party integrations

Denial of service

Access control issues

7 © 2023 Resonance Security LLC

Inaccurate business logic implementations

Incorrect gas usage

Arithmetic issues

Unsafe callbacks

Timestamp dependence

Mishandled panics, errors and exceptions

M Severity Rating

Security findings identified by Resonance are rated based on a Severity Rating which is, in turn,
calculated off the impact and likelihood of a related security incident taking place. This rating pro-
vides a way to capture the principal characteristics of a finding in these two categories and produce
a score reflecting its severity. The score can then be translated into a qualitative representation to
help customers properly assess and prioritize their vulnerability management processes.

The impact of a finding can be categorized in the following levels:

1. Weak - Inconsequential or minimal damage or loss
2. Medium - Temporary or partial damage or loss

3. Strong - Significant or unrecoverable damage or loss
The likelihood of a finding can be categorized in the following levels:

1. Unlikely - Requires substantial knowledge or effort or uncontrollable conditions
2. Likely - Requires technical knowledge or no special conditions

3. Very Likely - Requires trivial knowledge or effort or no conditions

Likelihood
Very Likely Likely Unlikely

8 © 2023 Resonance Security LLC

Impact

MW

Repository Coverage and Quality Rating

The assessment of Code, Tests, and Documentation coverage and quality is one of many goals of
Resonance to maintain a high-level of accountability and excellence in building the Web3 industry.
In Resonance it is believed to be paramount that builders start off with a good supporting base, not
only development-wise, but also with the different security aspects in mind. A product, well thought
out and built right from the start, is inherently a more secure product, and has the potential to be a
game-changer for Web3’s new generation of blockchains, smart contracts, and dApps.

Accordingly, Resonance implements the evaluation of the code, the tests, and the documentation
on a score from 1 to 10 (1 being the lowest and 10 being the highest) to assess their quality and
coverage. In more detail:

- Code should follow development best practices, including usage of known patterns, standard
libraries, and language guides. It should be easily readable throughout its structure, completed
with relevant comments, and make use of the latest stable version components, which most
of the times are naturally more secure.

- Tests should always be included to assess both technical and functional requirements of the
system. Unit testing alone does not provide sufficient knowledge about the correct function-
ing of the code. Integration tests are often where most security issues are found, and should
always be included. Furthermore, the tests should cover the entirety of the codebase, making
sure no line of code is left unchecked.

- Documentation should provide sufficient knowledge for the users of the system. It is useful
for developers and power-users to understand the technical and specification details behind
each section of the code, as well as, regular users who need to discern the different functional
workflows to interact with the system.

9 © 2023 Resonance Security LLC

During the security audit, several findings were identified to possess a certain degree of security-
related weaknesses. These findings, represented by unique IDs, are detailed in this section with
relevant information including Severity, Category, Status, Code Section, Description, and Recom-
mendation. Further extensive information may be included in corresponding appendices should it
be required.

An overview of all the identified findings is outlined in the table below, where they are sorted
by Severity and include a Remediation Priority metric asserted by Resonance’s Testing Team. This

metric characterizes findings as follows:

.|||||- "Heavy Project" Requires extensive work for a low impact on risk reduction.

RES-01

RES-02

RES-03

RES-04

RES-05
RES-06

RES-07

RES-08

RES-09

RES-10

RES-11

Frontrunning setParentPool() Results in Setting Malicious
Parent Pool
Wages Of Bettors Can Be Replicated

Bypass Calculations Of calcReturnAmount() On
removeCollateral()

Integer Overflow On calcCostBasisReduction() Leads To
Denial Of Service

Casting Overflow

Numerous Small Buy Orders Lead To Fee Bypass

Bets Can Be Fronrunned To Keep Denying Every Users Bets
On A Market

Minimum Buy Amount Check Bypass

Missing Token Validation In ConditionalToken Can Lead To
Unexpected Behavior

Insufficient Usage Of Pausable Functionality

Immutable interfaceld Leads to Impossibility of Upgrading
Interfaces

10 © 2023 Resonance Security LLC

"Quick Win" Requires little work for a high impact on risk reduction.

"Standard Fix" Requires an average amount of work to fully reduce the risk.

Different Validation Conditions When ERC1155 Tokens Are
RES':I.Z . [X
Received

RES-13 | isHalted() Allows Miners To Gain Unfair Advantage 'l'll"

Missing Validation Of poolValue On

RES-14 batchRemoveChildShares()

RES-15 | No Usage Of OpenZeppelin’s Math Library il

RES-16 | Unnecessary Initialization Of Variables With Default Values i

11 © 2023 Resonance Security LLC

Critical

Frontrunning setParentPool() Results in Setting
Malicious Parent Pool

RES-UBET-SBP01 Transaction Ordering Resolved

Code Section

Description

Any MarketMaker market created in the Ubet Sports platform is a ChildFundingPool. This means
that any market can be set with a parent pool through the function setParentPool (). This function
allows the _parent storage variable to change only once, rendering next attempts to change the
parent pool unfruitful. Once a parent has been set for a specific child pool, the only thing that can
be changed is the amount of funding approved.

The creation of the market is an atomic operation in relation to the setParentPool () operation.
This means that, any market may or may not have an associated parent pool. Because of this design
decision, it is possible for a malicious actor to frontrun setParentPool () transactions and assign the
parent pool of every market to their own controllable parent pool. This will severely impact various
other future funding operations.

Recommendation
It is recommended to either perform access control based on a whitelist when setting a new

parent pool, or set the parent pool immediately during the market’s creation, mandating every child
funding pool to have one parent pool.

Status

The issue has been fixed in 81895¢c7d36el1b620a85105839ee5168602a04e9f.

12 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ChildFundingPool.sol

. Wages Of Bettors Can Be Replicated

High

RES-UBET-SBP02 Business Logic Acknowledged

Code Section

» Not specified

Description

In the Ubet DeFi betting ecosystem, bets placed by any bettor are visible on the blockchain.
This transparency, while typical for blockchain operations, opens the potential vulnerability of bets
placed by famous or highly successful bettors being sniffed out and replicated. In other words, less
experienced or opportunistic bettors could observe and mirror the betting strategy of a well-
known bettor, hoping to achieve similar success. This could potentially impact the betting ecosys-
tem in a few significant ways.

Threat Scenario Example:

Alice is a bettor on Ubet with a very high success rate. Her winning strategy is well-known within
the Ubet community, and she’s earned a significant reputation as a result. Bob, on the other hand,
is a new bettor who’s looking for a quick way to increase his profits. He discovers that he can see
Alice’s bets on the blockchain and decides to start replicating her strategy, placing the same bets as
Alice.

Soon, word spreads within the community, and other bettors start replicating Alice’s bets too. The
market is now flooded with bets that mirror Alice’s strategy. This begins to have multiple impacts on
the Ubet ecosystem:

1. The odds skew significantly as they dynamically adjust to the increased number of similar bets.
2. The slippage increases, changing the odds unfavourably for other bettors.
3. The potential earnings for liquidity providers decrease as the pool of "bad" wagers shrinks.

4. The balance between bettors and liquidity providers is disrupted, impacting the health of the
platform.

5. The diversity of betting strategies decreases, which could make the platform less appealing to
those who enjoy creating unique betting strategies.

Recommendation

To mitigate this vulnerability, Ubet should consider implementing a Commit-Reveal scheme. In
this mechanism, bettors first commit to their bet without disclosing specifics. Only when all bettors
have committed their bets do they reveal the details. This would ensure that no one could sniff
out and replicate the bets of a famous bettor before the bets are placed, preserving the diversity of
betting strategies and maintaining the balance of the betting ecosystem.

13 © 2023 Resonance Security LLC

Status

The issue was acknowledged by Ubet’s team. The development team stated "Ubet aims
to create more transparency and community, so being able to see other’s bets is part of the
experience. The long term vision is being able to buy and sell bets at any moment at the
current price, which cannot work with a commit-reveal scheme.".

14 © 2023 Resonance Security LLC

High

Bypass Calculations Of calcReturnAmount() On re-
moveCollateral()

RES-UBET-SBP03 Business Logic Resolved

Code Section

Description

The function removeCollateral () is used to remove any collateral that was previously funded
with addFunding(). This function makes use of the function calcReturnAmount() inside the
FundingMath library to calculate how much collateral should be recovered by burning the necessary
shares on the ParentFundingPool.

When multiple funders fund the same parent pool and any child pool requests funding from the
parent pool using requestFunding(), any funder of the parent pool attempting to remove their col-
lateral will only receive a percentage of the collateral proportionate to the total supply of shares on
the parent pool. This effectively means that a funder may never be able to retrieve the full collateral
amount in this situation.

However, a funder may bypass the calculations made on calcReturnAmount () and retrieve the
fullamount of collateral by first using the function removeChildShares () and then funding the parent
pool again. On the next turn, the funder will be able to withdraw the full amount of collateral. This
is possible because the variable funderTotalShares also bases its calculations on collateral that was
already removed previously.

Recommendation

It is recommended to update the logic regarding the -calculation of the variable
funderTotalShares to not include collateral removals that were made using other means.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04e9f.

15 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ParentFundingPool.sol

Integer Overflow On calcCostBasisReduction()
Leads To Denial Of Service

High RES-UBET-SBP04 Arithmetic Issues Resolved

Code Section

Description

The function calcCostBasisReduction() is used during the burning of shares from the
FundingPool to calculate how much to reduce the cost basis of the funder. This function multiplies
funderCostBasis with sharesToBurn which both may contain very large values, since they directly
depend on the decimals of the collateralToken used. As such, for values close to the maximum

value of an uint128, this calculation may cause an integer overflow which may ultimately prevent
legitimate users from removing any collateral.

Recommendation

It is recommended to enforce a maximum amount of decimals for collateral tokens being used
in this protocol.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04e9f.

16 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/FundingMath.sol

Casting Overflow

High RES-UBET-SBP05 Arithmetic Issues Resolved

Code Section

Description

Whenever a variable with a larger amount of representation bits, e.g. uint256, is cast down to
a variable with a smaller amount of representation bits, e.g. uint128, casting overflows may oc-
cur. This type of overflow is not detected or reverted automatically by the Solidity language or the

Ethereum Virtual Machine, and therefore, must be accounted for manually in the source code of the
smart contract.

The functions removeCollateral () and _removeChildShares() are prone to casting overflows.

Recommendation

It is recommended to perform arithmetic calculations on variables with the same representation
bits. Variable cast downs should be accounted for in the source code.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04¢e9f.

17 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ParentFundingPool.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ParentFundingPool.sol

W Numerous Small Buy Orders Lead To Fee Bypass

RES-UBET-SBP06 Data Validation Resolved

Code Section

Description

In the current implementation of the batchBuyAffiliate function, it’s possible for a user to cre-
ate a multitude of small BuyOrders, each with a minimal investmentAmount, in an effort to bypass
or minimize the incurred fees.

The batchBuyAffiliate called function executes each BuyOrder separately and calculates fees
independently for each of them, which might result in rounding down to zero for each small transac-
tion due to the lack of precision in Solidity. This, in turn, would allow users to repeatedly execute
small bets, potentially bypassing fees that would otherwise be due for a single transaction of an
equivalent total value.

This vulnerability would effectively allow a user to carry out small transactions without incurring
the expected transaction fees, hence reducing the overall income for the platform and providing an
unfair advantage to the bettor.

If we assume the investmentAmount is 1 UBCKS (smallest unit of UBCKS), which is 10~-6 UBCKS
and we consider the feeDecimal to be 2%, or 0.02 * 10718 (to account for 18 decimals precision)
in the Solidity contract

1. Calculate the fee amount:

feeAmount = (investmentAmount * feeDecimal) / ONE_DECIMAL
=(1*0.02*10718) /10718
=0.02

Due to the precision limitations in Solidity, this feeAmount will be rounded down to 0.

2. Calculate the resulting investment minus fees:

investmentMinusFees = investmentAmount - feeAmount
=1-0
=1.

This amount is the same as the initial investment. In terms of UBCKS, it will be equal to 107-6
UBCKS.

Thus, for very small transactions, the fees are effectively bypassed due to the precision limita-
tions of Solidity. A minimum bet limit or ensuring non-zero fees could help prevent this potential
abuse.

18 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/MarketMaker.sol

Recommendation

Amend the conditional statement if (investmentAmount == 0) revert
InvalidInvestmentAmount (); in the buyFor function to also check for a minimum acceptable
investmentAmount. Implementing a minimum transaction size for each individual BuyOrder within
batchBuyAffiliate willdiscourage users from creating many small transactions to avoid fees, as the
cost of gas would outweigh any potential savings. The modified conditional might look something
like this: if (investmentAmount < MIN_INVESTMENT) revert InvalidInvestmentAmount();,
where MIN_INVESTMENT is a constant representing the minimum acceptable transaction size.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04¢e9f.

19 © 2023 Resonance Security LLC

Wi

Bets Can Be Fronrunned To Keep Denying Every
Users Bets On A Market

RES-UBET-SBP07 Denial of Service Acknowledged

Code Section

Description

A well-resourced attacker can continuously front-run pending transactions and artificially inflate
the slippage, causing the transactions to fail due to the minOutcomeTokensToBuy parameter check.
This effectively could lead to a denial-of-service condition where legitimate users are unable to place
bets.

Specifically, this issue is related to the following function:

 buyFor () inside smart contract MarketMaker.sol: This function is for buying conditional to-
kens as a bettor. It checks the minOutcomeTokensToBuy parameter which represents the min-
imum amount of outcome tokens that should be received from the transaction. If the calcu-
lated outcomeTokensBought is less than minOutcomeTokensToBuy, the transaction is reverted
with MinimumBuyAmountNotReached error.

If the attacker front-runs the transaction and buy a bet just before the targeted user, it might
change the odds and cause the slippage, hence making the targeted user’s minOutcomeTokensToBuy
check to fail.

Here’s a potential threat scenario:

1. The attacker monitors the transactions in the Ethereum mempool and waits for the targeted
User to place a large bet.

2. As soon as the targeted User’s transaction is sent to the network but before it gets confirmed,
the attacker, who has high resources, places a massive bet on the same outcome to the tar-
geted User’s bet.

3. Given Ubet’s dynamic odds calculation, the attacker’s bet changes the odds, and as a result,
the expected return of the targeted User’s bet.

4. When the Targeted User’s transaction is mined, the minOutcomeTokensToBuy condition in the
smart contract is checked. The targeted User’s transaction might fail if the actual outcome
tokens he’s about to buy are less than the minimum he specified, due to the odds shift caused
by the attacker’s bet.

5. The attacker’s strategy can therefore cause the targeted User’s bet to be revert. The attacker
can keep doing this to disrupt the market, causing a denial-of-service (DoS) condition, where

valid users are persistently denied from placing bets.

20 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/MarketMaker.sol

Recommendation

With the Commit-Reveal mechanism in place, the confidentiality of bets is enhanced, and the
information necessary for a successful front-running attack becomes inaccessible. In simple terms,
even though an attacker may see the transactions on the blockchain, they won’t know the specifics
of the bets. They can see that bets are being placed but without any details about what the bets are.

When users place bets, what the blockchain publicly shows is something like this:

» Bet Oxwhatever - 20 USDC
» Bet Oxdeadbeef - 50 USDC

» Bet Oxblobblob - 15 USDC

The hashes (like Oxwhatever, Oxdeadbeef, etc.) are commitments of the bet details, and do not
reveal any information about the actual bet (the team chosen, the outcome predicted, etc.). Even if
there’s a famous bettor with a known address, the attacker only sees how much they bet, but not
what they bet on.

So, with the commit-reveal mechanism, the attackers can potentially front-run the transactions,
but they won’t know what they are front-running. This effectively mitigates the vulnerability, making
the platform more secure against front-running attacks.

However, it’s crucial to note that this mechanism would introduce additional complexity and
the users would have to submit two transactions for every bet: one to commit and one to reveal.
This would mean increased gas costs for the users. Despite these complexities, the Commit-Reveal
mechanism significantly improves the platform’s security against front-running attacks.

Status

The issue was acknowledged by Ubet’s team. The development team stated "The mi-
nOutcomeTokensBought parameter shields users from shifting odds because of frontrun-
ners. Even though a bet can be denied in this case, it prevents the worse outcome of buying
the bet at much worse odds and the loss of money. Regarding the commit-reveal mech-
anism - it only works in parimutuel betting where the odds are determined at the end of
the betting period where the outcome and everyone’s bets are revealed. It does not work
in continuously priced markets such as ours where the odds are determined at the time of
the bet.".

21 © 2023 Resonance Security LLC

W Minimum Buy Amount Check Bypass

RES-UBET-SBP08 Code Quality Acknowledged

Code Section

Description

The buyFor function in the MarketMaker.sol contract enforces the check if
(outcomeTokensBought < minOutcomeTokensToBuy) revert MinimumBuyAmountNotReached();
to ensure that the minimum buy amount is reached before token purchases. However, when the
market conditions that trigger the transaction reversal are met, users can bypass this check by
directly calling the splitPosition function in ConditionalToken.sol to mint tokens, thus circumventing
the mentioned validation.

Recommendation

To ensure the intended flow and restrict direct exchanges of collateral tokens for conditional to-
kens via the ConditionalToken contract, it is advisable to implement checks within the smart con-
tract code. These checks should validate that the desired flow is followed, requiring users to go
through the designated process, such as utilizing the MarketMaker contract for exchanging collat-
eral tokens. By enforcing these checks, the protocol can maintain control over the token exchange
mechanism, preventing potential misuse or bypassing of intended procedures.

Status

The issue was acknowledged by Ubet’s team. The development team stated "This is
technically possible, but does not actually give a meaningful advantage to exploiters. With
ConditionalTokens it is always possible to create all outcomes of a condition from collateral
by calling splitPosition. This encodes the invariant that probabilities for all outcomes must
sum to one. In the best case scenario the user can then either merge the tokens back to
the same collateral, or wait until settlement, when they will also get the same amount of
collateral back. There is no financial advantage to be gained from calling splitPosition in
general. The case where buying from a MarketMaker has a worse price than splitPosition
will be due to low liquidity. In either case, there isn’t a financial benefit to be extracted.".

22 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/MarketMaker.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/conditions/ConditionalTokens.sol

Missing Token Validation In ConditionalToken Can
Lead To Unexpected Behavior

RES-UBET-SBP09 Data Validation Resolved

Code Section

Description

The ConditionalToken contract enables protocol users to create conditional tokens by providing
collateral. However, the functions within the contract lack validation for collateral tokens, which can
resultin unforeseenissues. Forinstance, itis possible to mint conditional tokens by exchanging them
for a malicious ERC20 token. It is also possible to phish legitimate users to run arbitrary attacker-
controlled functions.

Recommendation

To enhance the security of the protocol, it is advisable to validate all external contracts provided
as parameters. This validation helps ensure that only trusted and verified contracts are used, miti-
gating potential risks and vulnerabilities.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04¢e9f.

23 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/conditions/ConditionalTokens.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/conditions/ConditionalTokens.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/conditions/ConditionalTokens.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/conditions/ConditionalTokens.sol

W Insufficient Usage Of Pausable Functionality

RES-UBET-SBP10 Access Control Resolved

Code Section

» Not specified

Description

The majority of smart contracts used by the Ubet Betting Platform inherit from the contract
AdminExecutorAccess which in turn inherits from OpenZeppelin’s Pausable. This contract provides
pausable functionalities to smart contracts in case of emergencies so that mostly critical operations
may not be executed while the protocol is in a vulnerable state.

Throughout the several smart contracts, the pausable functionality is rarely used and is not in-
cluded in most of the critical operations, such as, adding and removing funding, creating markets,
reporting payouts, etc.

Recommendation
It is recommended to implement code logic that prevents normal critical actions to take place
during protocol emergencies. For that, smart contract’s Pausable modifiers whenPaused and

whenNotPaused should be used to create different branches of logic that avoid changing the state
of the platform to an even more unstable state.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04e9f.

24 © 2023 Resonance Security LLC

Immutable interfaceld Leads to Impossibility of
Upgrading Interfaces

M

RES-UBET-SBP11 Code Quality Acknowledged

Code Section

Description

The smart contract ChildFundingPool and BatchBet contain hardcoded values on variables iden-
tifying the interfaceId of other smart contracts. This effectively means that the referenced inter-
faces can never be changed in the future. Since these variables are used in the supportsInterface ()
operation, it will break the purpose of using ERC165 when upgrading the respective smart contracts.

Recommendation

It is recommended not to use hardcoded values on immutable or constant variables as these will
most likely break upgradeability and interoperability patterns across the blockchain.

Status

The issue was acknowledged by Ubet’s team. The development team stated "We do not
intend to change the existing interface - it is there for compatibility between components
across upgrades of their implementations. The hardcoded ids ensure our tests catch in-
advertent changes to the interface that break backward compatibility. If new functionality
must be added, a new and separate interface will be created.".

25 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ChildFundingPool.sol
https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/BatchBet.sol

Different Validation Conditions When ERC1155
Tokens Are Received

RES-UBET-SBP12 Data Validation Acknowledged

M

Code Section

Description

The functions onERC1155Received () and onERC1155BatchReceived () perform similar function-
alities, however, the latter performs them in batch in a single function. The functions are very similar
in code, however, the function onERC1155BatchReceived() contains an additional validation of the
from argument. This means that onERC1155BatchReceived () only returns successfully on mint op-
erations while onERC1155Received () returns successfully both on mint and transfer operations. This
difference creates ambiguities for users to make use of one function in detriment of the other.

Recommendation

It is recommended to perform the same set of actions on functions that are meant to be similar,
being function calls, data validations, events emissions, and reverts.

Status

The issue was acknowledged by Ubet’s team. The development team stated "The
difference between the checks is because the batch is meant purely for liquidity provi-
sion/minting - when collateral is split into tokens for the liquidity pool. The transfer is
allowed for single outcomes to support sells in the future, when a user transfers a single
outcome conditional token in order to swap it for collateral.”.

26 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/MarketMaker.sol

W isHalted() Allows Miners To Gain Unfair Advantage

RES-UBET-SBP13 Timestamp Dependence Resolved

Code Section

Description

The function isHalted () is used to verify if the deadline for the market trading has been reached.
Whenever the market is halted functions such as sell1(), _updateFairPrices(), addFundingFor (),
buyFor () cannot be used. Regular legitimate users have no way of abusing this but miners on the
other hand, control the block timestamp when the block is being mined. As such, malicious miners
may operate on an interval buffer of about 30 seconds, to manipulate the block.timestamp value
and execute the stated functions.

For example, a market that has been created with ahaltTime coincident with the specific event’s
end time may allow miners to abuse the block.timestamp and enter or exit betting positions after or
right before the event has ended. This way, they gain unfair advantage over regular platform users.

Recommendation
It is recommended to implement code logic that does not rely on block.timestamp Or block.
number to close the operations of a market. Some examples may be the implementation of a 2-

step betting process, or the existence of an event oracle that collects data off-chain and relays the
information about events into the smart contracts on a pull-based method.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04e9f.

27 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/markets/MarketMaker.sol

Missing Validation Of poolValue On batchRe-
moveChildShares()

Info RES-UBET-SBP14 Data Validation Resolved

Code Section

Description
The functions removeChildShares() and batchRemoveChildShares () perform similar function-
alities, however, the latter performs them in batch in a single function. The functions are very similar

in code, however, the function batchRemoveChildShares () is missing the same check made on line
171 on removeChildShares ().

Recommendation

It is recommended to perform the same set of actions on functions that are meant to be similar,
being function calls, data validations, events emissions, and reverts.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04e9f.

28 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/funding/ParentFundingPool.sol

Info

No Usage Of OpenZeppelin’s Math Library

RES-UBET-SBP15 Code Quiality Resolved

Code Section

Description

OpenZeppelinimplements several standards used all across blockchain development, especially
in Solidity and the Ethereum Virtual Machine. These standards primary goal is to unify and normalize
development patterns so that the entire blockchain may be more understandable and readily usable.

The Ubet Betting Platform implements source code that mimics or is very similar to components
already implemented by OpenZepellin, and could therefore, be switched with the more the standard
well-known approach. Such source code includes:

« Function ceildiv() on Math library, can be substituted with OpenZeppellin’s implementation
on Math library.

« Function min() on Math library, can be substituted with OpenZeppellin’s implementation on
Math library.

It should be noted that the usage of bigger libraries does not constitute an overuse of gas, since
only the functions that are used are included on the bytecode of the smart contract.

Recommendation

It is recommended to make use of implemented and audited standards that already solve the
necessary functionalities.

Status

The issue has been fixed in 81895¢c7d36e1b620a85105839ee5168602a04¢e9f.

29 © 2023 Resonance Security LLC

https://github.com/SportsFI-UBet/ubet-contracts-v1/blob/e26ddc8778662cbac3b9751c06362493f58ee298/contracts/Math.sol

Info

Unnecessary Initialization Of Variables With De-
fault Values

RES-UBET-SBP16 Gas Optimization Acknowledged

Code Section

» Not specified

Description

In the Solidity programming language, all variables are automatically initialized
to a default value corresponding to their type when they are declared. For exam-
ple, integer types are initialized to 0, boolean types to false, and address types to
0x00. Explicitly initializing variables to these de-
fault values when they are declared is therefore redundant, and since each operation in a contract
costs gas, it results in unnecessary gas costs. This could potentially impact the contract’s efficiency
and the cost of executing its functions. It’s important to review the contract’s code to identify any
instances of this issue and optimize for gas efficiency.

Recommendation
Review your contract’s code for variable declarations where the variable is explicitly initialized to

the type’s default value. Remove the explicit initialization and let Solidity automatically initialize the
variable. Here’s an example:

Before:

uint256 public counter = 0;
After:

uint256 public counter;

In both cases, counter will be initialized to 0. However, the latter declaration will cost less gas
when the contract is deployed, improving the contract’s efficiency.

Status

The issue was acknowledged by Ubet’s team. The development team stated "We fol-
lowed the recommendations of the slither static analysis tool. We also prefer to be explicit
about all variable initialization even if it is zero, to ensure we are not forgetting to set some-
thing to a different value. We compile with optimizations turned on, so it should not make
a difference to the bytecode or gas cost to explicitly initialize to 0.".

30 © 2023 Resonance Security LLC

RES-01 Frontrunning setParentPool() Results in Setting Malicious Parent Pool

ParentFundingPool.t.sol (added lines):

function testAddParentFrontrun() public {

// Malicious

ParentFundingPool parentPoolMalicious = new
ParentFundingPool (makeAddr ("random-user"), erc20);
childPools[0] .setParentPool (address(parentPoolMalicious), 0);

// Legitimate
childPools[0] .setParentPool (address(parentPool), 100);

RES-03 Bypass Calculations Of calcReturnAmount() On removeCollateral()

MarketFundingPool.t.sol (added lines):

function testExploitl() public {

// Create

uint256 limit = 1000;
MarketMakerFactory.PriceMarketParams[] memory params = new
MarketMakerFactory.PriceMarketParams[] (1) ;

uint256 questionId = O;

params[0] = makeMarketParams(questionId, 3600);

MarketMaker [] memory markets = createMarkets(access.fund.executor, limit,
params) ;
MarketMaker market = markets[0];

vm.prank(access.fund.admin) ;
marketFundingPool.setRequestLimit (1imit);

// Fund by Bob

collateralToken.mintAndApprove(vm, bob, address(marketFundingPool), limit);
vm.prank (bob) ;

uint256 bobFundingShares = marketFundingPool.addFunding(limit);

// Fund by Alice

collateralToken.mintAndApprove(vm, alice, address(marketFundingPool), limit);
vm.prank(alice);

uint256 aliceFundingShares = marketFundingPool.addFunding(limit);

// Add the child pool
vm.prank(access.fund.executor) ;
marketFundingPool.setApprovalForChild(address (market), limit);

// increase limits

31 © 2023 Resonance Security LLC

vm.prank(access.fund.admin) ;
marketFundingPool.setRequestLimit (1imit);

// Request funding into child pool
vm.prank (address (market)) ;
marketFundingPool.requestFunding(limit);

// Ezploit Start //
vm. prank (bob) ;
marketFundingPool.removeChildShares (address(market), bobFundingShares) ;

collateralToken.mintAndApprove(vm, bob, address(marketFundingPool), limit);
vm. prank (bob) ;
marketFundingPool.addFunding(limit);

//vm.prank (address (market)) ;
//marketFundingPool.requestFunding (limit);
// Ezploit End //

vm. prank (bob) ;
marketFundingPool.removeCollateral (bobFundingShares) ;

marketFundingPool.balance0f (bob) ;

RES-04 Integer Overflow On calcCostBasisReduction() Leads To Denial Of Service

MarketFundingPool.t.sol (added lines):

function testExploit2() public {
// Create
uint256 limit = type(uint128) .max;
MarketMakerFactory.PriceMarketParams[] memory params = new
< MarketMakerFactory.PriceMarketParams[] (1) ;
uint256 questionId = O;
params[0] = makeMarketParams(questionId, 3600);

MarketMaker [] memory markets = createMarkets(access.fund.executor, limit,
< params);
MarketMaker market = markets[0];

vm.prank(access.fund.admin) ;
marketFundingPool.setRequestLimit (1limit) ;

// Fund by Bob

collateralToken.mintAndApprove(vm, bob, address(marketFundingPool), limit);
vm. prank (bob) ;

uint256 bobFundingShares = marketFundingPool.addFunding(limit);
collateralToken.mintAndApprove(vm, bob, address(marketFundingPool), limit);
vm. prank (bob) ;

marketFundingPool.addFunding(limit) ;

32 © 2023 Resonance Security LLC

// Fund by Alice

collateralToken.mintAndApprove(vm, alice, address(marketFundingPool), limit);
vm.prank(alice);

uint256 aliceFundingShares = marketFundingPool.addFunding(limit) ;

// Add the child pool
vm.prank(access.fund.executor) ;
marketFundingPool.setApprovalForChild(address(market), limit);

// increase limits
vm.prank(access.fund.admin) ;
marketFundingPool.setRequestLimit (limit) ;

// Request funding into child pool
vm.prank (address (market)) ;
marketFundingPool.requestFunding(limit);

// Ezploit Start //

vm.prank (bob) ;

marketFundingPool.removeCollateral (bobFundingShares) ;
// Ezploit End //

33 © 2023 Resonance Security LLC

	Document Control
	Copyright and Disclaimer

	Executive Summary
	System Overview
	Repository Coverage and Quality

	Target
	Methodology
	Severity Rating
	Repository Coverage and Quality Rating

	Findings
	Frontrunning setParentPool() Results in Setting Malicious Parent Pool
	Wages Of Bettors Can Be Replicated
	Bypass Calculations Of calcReturnAmount() On removeCollateral()
	Integer Overflow On calcCostBasisReduction() Leads To Denial Of Service
	Casting Overflow
	Numerous Small Buy Orders Lead To Fee Bypass
	Bets Can Be Fronrunned To Keep Denying Every Users Bets On A Market
	Minimum Buy Amount Check Bypass
	Missing Token Validation In ConditionalToken Can Lead To Unexpected Behavior
	Insufficient Usage Of Pausable Functionality
	Immutable interfaceId Leads to Impossibility of Upgrading Interfaces
	Different Validation Conditions When ERC1155 Tokens Are Received
	isHalted() Allows Miners To Gain Unfair Advantage
	Missing Validation Of poolValue On batchRemoveChildShares()
	No Usage Of OpenZeppelin's Math Library
	Unnecessary Initialization Of Variables With Default Values

	Proof of Concepts

