

Belief Market Audit Report

Review Date(s):
4/1/25 – 4/3/25

Fix Review Date(s):
4/7/25

Bio

As a professional smart contract auditor, I have conducted over 100 security reviews for public
and private clients. With 30+ first-place finishes in public contests on platforms like Code4rena
and Sherlock, I have been recognized as a top-performing security expert. By prioritizing
rigorous analysis and providing actionable recommendations, I have contributed to securing
over $1 billion in TVL across 100+ protocols. Throughout my career I have collaborated with
many organizations including the prestigious Blackthorn as a founding security researcher and
as a Lead Security researcher at SpearbitDAO.

Scope

The upredict-contracts repo was reviewed at commit hash 06da56c

In-Scope Contracts:

contract/*.sol

Deployment Chain(s):

Polygon Mainnet

 Fix Review Commit Hash: 40f6609

Summary of Findings

Identifier Title Severity Mitigated

[H-01] Any bet can be refunded by supplying invalid betBlob High

[H-02] Malicious request with amount == 0 can be used to
drain market

High

[M-01] Changes to creatorFeeDecimal and operatorFeeDecimals
will retroactively apply to older bets

Medium

https://code4rena.com/@0x52
https://audits.sherlock.xyz/watson/0x52
https://www.blackthorn.xyz/
https://cantina.xyz/u/iam0x52
https://github.com/SportsFI-UBet/upredict-contracts
https://github.com/SportsFI-UBet/upredict-contracts/commit/06da56ced74cd44297b0885436056f92121c3a26
https://github.com/SportsFI-UBet/upredict-contracts/commit/40f6609713fe7179f41a7d3671ca70b9c74da351

Detailed Findings

[H-01] Any bet can be refunded by supplying invalid betBlob

Details

MarketsBase.sol#L119-L146

 function requestRefund(BetRequest calldata request, BetBlob calldata
betBlob)
 external
 returns (IERC20 token, address to, uint256 amount)
 {
 RequestCommitment requestCommitment = getCommitment(request);
 BetState storage betState = bets[requestCommitment];
 require(betState.amount == request.amount,
MarketsBetDoesntExist(requestCommitment));
 betState.amount = 0;

 require(
 block.number >= request.refundStartBlock,
 MarketsRefundTooEarly(requestCommitment,
request.refundStartBlock, block.number)
);

@> MarketCommitment marketCommitment = _getMarketFromBet(betBlob);
 ResultCommitment resultCommitment = marketResults[marketCommitment];
 require(
 resultCommitment == nullResultCommitment,
MarketsResultAlreadyRevealed(marketCommitment, resultCommitment)
);

 token = request.token;
 to = request.from;
 amount = request.amount;

 token.safeTransfer(to, amount);

 emit MarketsRefundIssued(requestCommitment, marketCommitment, token,
to, amount);
 }

When requesting a refund, the marketCommitment is retrieved from the betBlob data.
However the commitment hash of the supplied betBlob is never validated against the
BetCommitment stored in the betRequest. This allows any arbitrary betBlob to be supplied
during the refund process. To exploit this, a malicious user can supply a betBlob that links to an

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L119-L146

invalid market. This satisfies the resultCommitment == nullResultCommitment requirement,
allowing users to receive an invalid refund and cause a shortfall in the protocol.

Lines of Code

MarketsBase.sol#L119-L146

Recommendation

The commitment hash of the supplied betBlob should be validated against the BetCommitment
in the betRequest. This ensures that the betBlob corresponds to the originally committed
BetCommitment, preventing the use of arbitrary or malicious betBlob data during refund
requests.

Remediation

Fixed in commit 40f6609. The commitment of the supplied betBlob is now calculated and
compared with the that of the request to ensure the supplied betBlob is legitimate.

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L119-L146
https://github.com/SportsFI-UBet/upredict-contracts/commit/40f6609713fe7179f41a7d3671ca70b9c74da351

[H-02] Malicious request with amount == 0 can be used to drain
market

Details

MarketsBase.sol#L271-L282

 {
 BetState storage betState = bets[requestCommitment];
 BetCommitment betCommitment = getCommitment(betBlob);
 require(
 request.betCommitment == betCommitment,
 MarketsInvalidBetRequest(requestCommitment, betCommitment,
request.betCommitment)
);
@> require(betState.amount == request.amount,
MarketsBetDoesntExist(requestCommitment));

 // Since the bet is revealed, no amount should remain to be revealed
 betState.amount = 0;
 }

When revealing a bet, the above lines are designed to prevent invalid bets from being revealed.
By checking that betState.amount == request.amount then setting betState.amount to 0,
it simultaneously prevents most invalid bets as well as double reveals. However, it misses the
edge case in which request.amount == 0. This allows a malicious user to submit an invalid
betRequest with request.amount == 0 and a corresponding betBlob that will successfully
bypass this check.

WeightedParimutuelMarkets.sol#L115-L139

 function _getPayout(
 MarketBlob calldata marketBlob,
 ResultBlob calldata resultBlob,
 BetRequest calldata request,
 BetBlob calldata betBlob
)
 internal
 pure
 override
 returns (uint256 winningPotAmount, uint256 losingPotAmount, uint256
marketDeadlineBlock, address creator)
 {
 MarketInfo memory marketInfo = abi.decode(marketBlob.data,
(MarketInfo));
 BetHiddenInfo memory hiddenInfo = abi.decode(betBlob.data,
(BetHiddenInfo));

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L271-L282
https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/WeightedParimutuelMarkets.sol#L115-L139

 ResultInfo memory resultInfo = abi.decode(resultBlob.data,
(ResultInfo));

 marketDeadlineBlock = marketInfo.deadlineBlock;

 creator = abi.decode(marketBlob.data, (MarketInfo)).creator;
 uint256 betOutcomeMask = (1 << hiddenInfo.outcome);
 if ((betOutcomeMask & resultInfo.winningOutcomeMask) != 0) {
 winningPotAmount = request.amount;
 losingPotAmount =
@> Math.mulDiv(hiddenInfo.betWeight, resultInfo.losingTotalPot,
resultInfo.winningTotalWeight);
 }
 }

Since the betBlob is arbitrary, any value for hiddenInfo.betWeight can be supplied. As a
result, the entire resultInfo.losingTotalPot can be stolen via this attack vector.

Lines of Code

MarketsBase.sol#L271-L282

Recommendation

revealBet should revert if request.amount == 0.

Remediation

Fixed in commit 40f6609. revealBet now requires that request.amount > 0

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L271-L282
https://github.com/SportsFI-UBet/upredict-contracts/commit/40f6609713fe7179f41a7d3671ca70b9c74da351

[M-01] Changes to creatorFeeDecimal and operatorFeeDecimals will
retroactively apply to older bets

Details

MarketsBase.sol#L76-L80

function setFees(uint16 _creatorFeeDecimal, uint16 _operatorFeeDecimal)
external onlyRole(DEFAULT_ADMIN_ROLE) {
 creatorFeeDecimal = _creatorFeeDecimal;
 operatorFeeDecimal = _operatorFeeDecimal;
 emit MarketsFeesChanged(_creatorFeeDecimal, _operatorFeeDecimal);
}

MarketsBase.sol#L300-L314

 if (losingPotAmount > 0) {
 uint256 currentlyAvailable = availableLosingPot[marketCommitment];
 require(currentlyAvailable >= losingPotAmount,
MarketsInvalidResult(marketCommitment, resultCommitment));
 availableLosingPot[marketCommitment] = currentlyAvailable -
losingPotAmount;

 // only charge fees on the losing pot, to discourage markets that
 // are heavily imbalanced. If the losing pot is small (because it's
 // a very unlikely result), then creator fees are also small
@> uint256 creatorFee = (creatorFeeDecimal * losingPotAmount) /
FEE_DIVISOR;
@> uint256 operatorFee = (operatorFeeDecimal * losingPotAmount) /
FEE_DIVISOR;
 creatorFees[token][creator] += creatorFee;
 operatorFees[token] += operatorFee;
 emit MarketsBetFeeCollected(marketCommitment, token, creator,
creatorFee, operatorFee);
 losingPotAmount -= (creatorFee + operatorFee);
 }

Above we see that the creator and operator fee are applied in real time whenever a bet is
revealed. The result is that after the values are updated, the new fee percentages will be
immediately applied to all revealed bets. This retroactively applies the updated fees to all bets
even those for markets that closed well before the updated fees. To ensure fairness to all
bettors, fees should be taken according to the percentage at the time of the bet.

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L76-L80
https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L300-L314

Lines of Code

MarketsBase.sol#L300-L314

 if (losingPotAmount > 0) {
 uint256 currentlyAvailable = availableLosingPot[marketCommitment];
 require(currentlyAvailable >= losingPotAmount,
MarketsInvalidResult(marketCommitment, resultCommitment));
 availableLosingPot[marketCommitment] = currentlyAvailable -
losingPotAmount;

 // only charge fees on the losing pot, to discourage markets that
 // are heavily imbalanced. If the losing pot is small (because it's
 // a very unlikely result), then creator fees are also small
@> uint256 creatorFee = (creatorFeeDecimal * losingPotAmount) /
FEE_DIVISOR;
@> uint256 operatorFee = (operatorFeeDecimal * losingPotAmount) /
FEE_DIVISOR;
 creatorFees[token][creator] += creatorFee;
 operatorFees[token] += operatorFee;
 emit MarketsBetFeeCollected(marketCommitment, token, creator,
creatorFee, operatorFee);
 losingPotAmount -= (creatorFee + operatorFee);
 }

Recommendation

creatorFeeDecimal and operatorFeeDecimal should be cached upon market resolution and
cached values should be read upon redemption rather than using the current values.

Remediation

Fixed in commit 40f6609. creatorFeeDecimal and operatorFeeDecimal are now cached in
the betState when the bet is placed.

https://github.com/SportsFI-UBet/upredict-contracts/blob/06da56ced74cd44297b0885436056f92121c3a26/contracts/MarketsBase.sol#L300-L314
https://github.com/SportsFI-UBet/upredict-contracts/commit/40f6609713fe7179f41a7d3671ca70b9c74da351

