Whiskey Maturation in Changing Climates: Four Years of Data and Advanced Modeling

Chris Depcik, Ph.D. Andrew Wiehebrink

Introduction

- Institutional knowledge is invaluable in whiskey aging and distillation, shaping tradition and expertise
- Whiskey aging dynamics are complex, driven by temperature, humidity, barrel properties, and warehouse conditions
- Modeling offers a window into the barrel, revealing processes that cannot be directly observed
- Goal: Develop a model that accurately replicates real-world warehouse conditions
- Combining tradition with advanced analytics leads to better-informed decisions and deeper insights

Outline

- 3-D Barrel Model Predictive Capabilities
- Data Analysis & Proof Gallon Predictions
- Spirit Penetration & Devil's Cut
- Congener Behavior & Reactions
- Exploring Model Predictions Across Floors
- Discussion & Model Refinements
- Conclusions

Model Predictive Capabilities

- Uses Ambient Pressure, Temperature, Relative Humidity, and Alcohol Vapor (when available) to Predict:
 - Average spirit temperature
 - Ethanol / water evaporation: Angel's share
 - Total volume and proof gallons
 - Alcohol-by-Volume and Alcohol-by-Mass
 - Influence of side-up vs. top-up barrels
 - Impact of entry proof
 - Chemistry (congeners)
 - Staves spirit penetration & Devil's cut
 - Economics: Barrel value & evaporation cost
 - pH & Color
 - Ullage pressure and hydrostatic forces

DistillAge3D: A cutting-edge 3-D barrel model, powered by physics and thermodynamics, runs independently on your desktop – no additional software required

Setting Up the Model

Parameter	Value
Barrel Height	35 in
Head Diameter	20.875 in
Head Thickness	1 in
Bilge Circumference	80.5 in
Stave Thickness	0.938 in
Fill Weight (avg.)	509.229 lbf
Barrel Weight (avg.)	110.607 lbf
Fill Proof	120
Fill Temperature	75 °F
Whiskey Volume (calc.)	52.7224 gal
Barrel Orientation	Side Up
Stave & Head Moisture Content	12%

Surface plot of the constant pressure specific heats of barrel at the start: whiskey = yellow, air gap – dark blue

Indication of the wetted staves and the surface of whiskey in the barrel; scale is just for illustrative purposes

Understanding the Data

- Proof was measured after 4 years; ambient data only 3+ years
- Re-used Year 3 for Year 4 data
- Floor 5*: Data missing between 3/2/2021 & 10/4/2021

	Floor 1	Floor 2	Floor 3	Floor 4	Floor 5
Temperature Range [°F]	24.6 – 101.9	26.2 – 102.3	28.1 – 102.2	28.9 – 101.5	28.1 – 108.0*
Relative Humidity (RH) Range [%]	23.6 – 92.1	21.3 – 91.2	22.2 – 91.2	21.5 – 91.8	23.7 – 89.2*
Proof After 4 Years [°]	122.40	127.00	125.70	127.30	130.72

* Used Floor 4 data for missing Floor 5 data

Floor 2 Proof Higher Than Expected

- Data suggests Floor 3 > Floor 2 proof, observed Floor 2 proof is higher
 - Floor 3 is, on average, +1.70 °F warmer \rightarrow increased ethanol and water evaporation
 - Floor 3 relative humidity is, on average, -2.83% lower \rightarrow higher water evaporation
- Potential explanations:
 - Barrel location Differences in heat transfer
 - Airborne ethanol Potential resistance to ethanol loss
 - Barrel variation Different wood porosities affecting evaporation
- Modeling approach: Evaluate data, identify trends, and refine predictions to match observations

Proof Gallons

- Baldwin & Andreasen (1974): ~3% annual proof gallon loss, providing a benchmark for modeling
- 2nd-floor barrels: Adjusted permeability to align with observed evaporation trends
- Evaporation patterns: Driven primarily by floor-level temperature and relative humidity differences
- Spirit height & proof measurements: Can be used to calibrate model & better quantify losses

Proof results at end of four years

Floor	Exp. [°]	Model [°]	Difference [°]	Loss [° gal]
] st	122.40	122.82	+0.42	5.49
2 nd	127.00	126.94	-0.06	6.35
3 rd	125.70	124.72	-0.98	7.07
4 th	127.30	126.83	-0.47	7.90
5 th	130.72	131.49	+0.77	9.37

doi: 10.1093/jaoac/57.4/940

Spirit Stave Penetration & Devil's Cut

- Roussey et al. (2021): In-situ monitoring of wine barrel mass & ullage pressure
- Penetration model factors

 - Temp↑ Permeability↓ Pore size↓
 - RH↓ Permeability↓ Pore size↓
 - Temp↑ Surface Tension↓ Cohesion↓
 - Temp↑ Viscosity↓ Flow Resistance↓
 - Wood porosity (constant)
 - Spirit contact angle (constant)
 - Variation in hoop placement (not considered)

Floor	Penetration [in]	Devil's Cut [kg]
] st	0.370 ± 0.156	1.221 ± 0.495
2 nd	0.392 ± 0.158	1.228 ± 0.494
3 rd	0.398 ± 0.164	1.305 ± 0.515
4 th	0.408 ± 0.167	1.334 ± 0.521
5 th	0.419 ± 0.170	1.363 ± 0.525

Congeners & Reactions

- Reaction expressions include precursor effects and oxidation
- Ethanol concentration included to account for proof fluctuations
- Flexible framework allows for easy modifications and additions

<u>#</u>	<u>Species</u>	<u>Formula</u>	Pre-cursor
1	m-cresol	C ₇ H ₈ O	amino acids
2	o-cresol	C ₇ H ₈ O	amino acids
3	p-cresol	C ₇ H ₈ O	amino acids
4	vanillin	$C_8H_8O_3$	coniferaldehyde
5	cis-isoeugenol	C ₁₀ H ₁₂ O ₂	coniferyl alcohol
6	coniferaldehyde	$C_{10}H_{10}O_3$	coniferyl alcohol
7	coniferyl aldehyde	$C_{10}H_{10}O_3$	coniferyl alcohol
8	eugenol	$C_{10}H_{12}O_2$	coniferyl alcohol
9	guaiacol	C ₇ H ₈ O ₂	coniferyl alcohol
10	trans-isoeugenol	$C_{10}H_{12}O_2$	coniferyl alcohol
11	methoxyeugenol	$C_{11}H_{14}O_3$	eugenol
12	cis-lactone	C ₉ H ₁₆ O ₂	fatty acids
13	trans-lactone	C ₉ H ₁₆ O ₂	fatty acids
14	4-vinyl-guaiacol	$C_9H_{10}O_2$	ferulic acid
A SE			

<u>#</u>	<u>Species</u>	<u>Formula</u>	Pre-cursor
15	acetyl furan	$C_6H_6O_2$	furfural
16	furfuryl alcohol	$C_5H_6O_2$	furfural
17	4-ethyl-guaiacol	C ₉ H ₁₂ O ₂	guaiacol
18	4-methyl-guaiacol	C ₈ H ₁₀ O ₂	guaiacol
19	coniferyl alcohol	C ₁₀ H ₁₂ O ₃	lignin
20	ferulic acid	$C_{10}H_{10}O_4$	lignin
21	methanol	CH ₄ O	lignin
22	methoxy group	-OCH ₃	lignin
23	p-coumaryl alcohol	C ₉ H ₁₀ O ₂	lignin
24	sinapyl alcohol	C ₁₁ H ₁₄ O ₄	lignin
25	5-HMF	C ₆ H ₆ O ₃	Maillard
26	5-methyl-furfural	$C_6H_6O_2$	Maillard
27	furaneol	C ₆ H ₈ O ₃	Maillard
28	furfural	$C_5H_4O_2$	Maillard
29	maltol	C ₆ H ₆ O ₃	Maillard

ŧ	<u>#</u>	<u>Species</u>	<u>Formula</u>	Pre-cursor
3	30	phenol	C ₆ H ₆ O	p-coumaryl alcohol
3	31	4-ethyl-phenol	$C_8H_{10}O$	phenol
3	32	syringaldehyde	C ₉ H ₁₀ O ₄	sinapaldehyde
3	33	sinapaldehyde	C ₁₁ H ₁₂ O ₄	sinapyl alcohol
3	34	syringol	C ₈ H ₁₀ O ₃	sinapyl alcohol
3	35	ethyl vanillate	$C_{10}H_{12}O_4$	vanillic acid
1	36	methyl vanillate	C ₉ H ₁₀ O ₄	vanillic acid
3	37	vanillic acid	C ₈ H ₈ O ₄	vanillin
3	38	syringic acid	$C_9H_{10}O_5$	syringaldehyde
3	39	acetaldehyde	C_2H_4O	ethanol
4	40	acetic acid	$C_2H_4O_2$	acetaldehyde
4	41	ethyl acetate	$C_4H_8O_2$	acetic acid
Z	42	isobutyl alcohol	$C_4H_{10}O$	amino acid
4	43	isobutyraldehyde	C ₄ H ₈ O	isobutyl alcohol
2	44	isobutyl acetate	$C_6H_{12}O_2$	isobutyl alcohol
2	45	apocynin	C ₉ H ₁₀ O ₃	coniferyl alcohol
				10

Phenols: Smoky, Spicy, & Woody

Phenols Underpredicted at Year 1: Model shows a 6.8% average difference from experimental data

Methoxys: Sweet, Spicy, & Aromatic

Methoxys Trends Matched: Model shows a 7.5% average difference from experimental data

Furans: Caramel, Toast, & Sugar

Furans Predicted Reasonably: Model shows a 7.1% average difference from experimental data

Eugenols: Spicy, Smoky, & Clove

Eugenols Predicted Consistently: Model shows a 6.0% average difference from experimental data

Final Notes: Woody, Creamy, & Sweet

Other Chemical Species: Model predictions align with experimental data, showing a 5.9% average difference

Phenols & Methoxys: Different Floors

Floor-Level Predictions at Year 4: Model captures species behavior across floors, with trends showing variability rather than perfect linearity

Discussion

- Captures non-linear chemistry, adapts to wetted surface areas & oxygen influx
- Strong predictive ability, with an average congener difference of 6.7% (mg/L)
- Model improvements:
 - Enhanced data collection on initial distillate composition
 - Frequent sampling in the first 6 months, then reduced frequency
- Expectation vs. Reality: Model provides insight and precise trend predictions, but expecting exact matches is unreasonable
- Physics & Thermodynamics-Based:
 - Requires minimal input data for accurate predictions
 - Unlike Machine Learning models, does not require massive datasets

Conclusions

- Physics-Based Model Accurately predicts aging trends, providing reliable insights into the maturation process
- Value Proposition Can help guide decisions about future production strategies
- Process Optimization Allows for adjustments to improve efficiency, yield, & quality
- Operational Benefits Supports efforts to optimize proof gallons, congeners, and consistency
- Predictive Decision-Making Helps explore proactive warehouse adjustments
- Consistency & Efficiency Potential to improve batch uniformity and minimize the need for corrective blending
- Versatility Adaptable to other barrel-aged spirits beyond whiskey

Chris Depcik – LinkedIn

Distinct DistillAge

DISTILLAGE

Thank you!

Any Questions?

Chris Depcik, Ph.D. Andrew Wiehebrink Independent Stave Company

Furans & Eugenols – Different Floors

Floor-Level Predictions at Year 4: Model captures species behavior across floors, with trends showing variability rather than perfect linearity

Rest – Different Floors

Floor-Level Predictions at Year 4: Model captures species behavior across floors, with trends showing variability rather than perfect linearity

pH Level Predictions

- Baldwin & Andreasen (1974): Changes in pH level over time
- General model based on ABV, acid extraction, and oxidation reaction expressions
- Can be extended to include tannin conversion to ellagic and gallic acids
- Floor impact:
 - ABV[↑] pH[↑]
 - Volume loss↑ Wetted surface area↓
 Lower acid extraction = pH↑
 - Temp↑ Extraction & Oxidation↑ pH↓

Overall, the pH level decreases with increasing floor as the temperature effects cause the reaction rates to dominate

Color Predictions

- Baldwin & Andreasen (1974): 430 nm absorbance data over 12 years correlates with whiskey color development
- Color model: Integrated with pH predictions to track extraction trends
- Tannins: Primary contributor to color, strongly influenced by pH
- Floor-level effect: Higher floors show subtle darker color due to increased extraction (reflected in pH changes)

doi: 10.1093/jaoac/57.4/940

Economics

- Whiskey valuation modeling: Tracks value changes over time to inform financial decisions
- Technoeconomic analysis: Links exergy losses to economic impact, optimizing efficiency
- Strategic insights: Helps assess aging duration and floor selection for maximum returns

Estimate of the total value of the barrel on the 1st floor along with the cost due to evaporation

Ullage Pressure

- Roussey et al. (2021): Ullage pressure influenced by initial headspace volume and wood moisture variations
- Evaporation effect: Slows gas expansion in the barrel headspace over time
- Model integration: Accounts for both factors, showing increased evaporation impact at higher floors

Ullage pressure across floors: Snapshot at 1.00–1.06 Years, highlighting increased evaporation effects at higher levels

