## Lecture 4 Materials

## Topology, Knot Theory, and Manifolds

June 25, 2025

**Exercise 1.1.** Given a convex polyhedron with V = 8 vertices and F = 6 faces, how many edges E does it have? (Feel free to look up the definition of a polyhedron.)

**Exercise 1.2.** Suppose S is a surface without boundary that has been triangulated. This triangulation can be viewed as a CW complex with V vertices, E edges, and F faces.

- a. Derive a relationship between E and F.
- b. If S has 15 vertices and 60 edges, which surface is S?

**Exercise 1.3.** A manifold is called 'simply connected' if any closed curve (i.e. a loop) on that manifold can be contracted to a point smoothly. For example, the 2-sphere is simply connected:

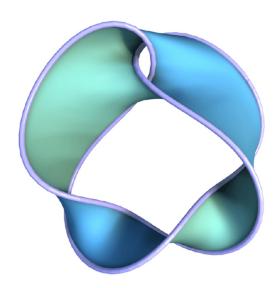



Figure 1: A loop on  $S^2$  being contracted to a point.

- a. Is being simply connected an invariant of a manifold?
- b. Is it possible for a non-orientable surface to be simply connected?

**Exercise 1.4.** Below (on the next page) is a surface whose boundary is a knot. Identify the surface.

Outside Content 1.5. A video introducing knot theory.

