TOSUV

TP Series Product Family

Version: V1.0 | English

tosunai.com

Copyright Information

Shanghai TOSUN Technology Ltd

No. 9 Building, 1288 Jiasong North Road, Jiading District, Shanghai (Headquarters)

Buildings 14-17, Lane 4849 Cao'an Highway (Shanghai Research Institute)

In the principle of providing better services to users, Shanghai TOSUN Technology Ltd (hereinafter referred to as "TOSUN Technology") will present as much detailed and accurate product information as possible in this manual. However, due to the timeliness of the content in this manual, TOSUN Technology cannot fully guarantee the timeliness and applicability of this document at any time.

If there are any changes to the information and data in this manual, no separate notice will be given. To obtain the latest version of the information, please visit the <u>official website of TOSUN Technology</u> or contact the staff of TOSUN Technology. Thank you for your understanding and support!

TOSUN reserves all rights to this document and its contents. Without the written permission of TOSUN Technology, no part of this manual may be copied in any form or by any means.

@ Copyright 2024-2025, Shanghai TOSUN Technology Ltd. All rights reserved.

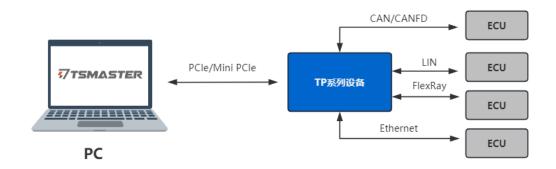
What Is the TP Series Product Family?

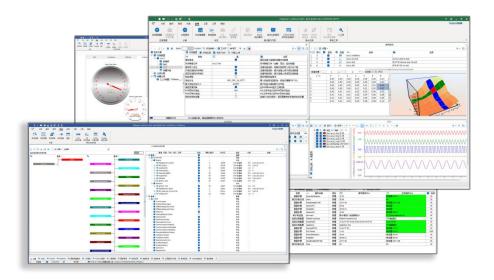
TOSUN has a wide range of product series, such as the TC series, TP series, TE series, TLog series, TTS series, and so on. Among them, to meet the market demand for PCIe interface, TP series is derived from the TC and TE series by changing the connection interface with the PC. As the derivative product of TC and TE series, TP series also cover tools for CAN/CAN FD communication protocol, LIN communication protocol, FlexRay communication protocol, and Ethernet communication protocol

What Products Are Included in the TP Series?

TP1013	TP1013 TP1018		TP1034
TP1051	TP1051 MP1013		

What Can They Do?


- Bus data collection;
- Domain controller testing;
- Various automated testing systems;
- UDS diagnostics and calibration with CCP and XCP;
- Offline/online replay for blf and asc format files;
- ECU flashing;
- Vehicle Ethernet communication testing;
- Vehicle Ethernet bus simulation;
- ▶ ..


How to Use TP Series Product?

Once connected the TP series products to a PC via PCIe or Mini PCIe interface, on the PC side, with the powerful TSMaster software, users can control the device to perform communication with the ECUs using CAN/CAN FD, LIN, FlexRay, Ethernet protocols.

Contents

1.At	bout this User Manual	9
	1.1 Warranty	9
	1.2 Copyright	9
2.Pro	oduct Overview	10
	2.1 Multi-channel CAN/LIN Bus Products	10
	2.2 Multi-channel CAN FD/FlexRay Bus Products	12
	2.3 Multi-channel Ethernet Interface Products	14
	2.4 CAN Surge Protection Device	16
3.Ge	eneral Information	18
	3.1 Bus Data Collection and Analysis	18
	3.2 Bus Simulation	20
	3.3 Diagnostic	21
	3.4 Calibration	22
	3.5 DoIP Function	25
	3.6 Secondary Development	27
4.TP	P1013	27
	4.1 Overview	27
	4.2 Features	29
	4.3 Technical Data	30
	4.4 Electrical Data	30
	4.5 Mechanical Data	31
	4.6 Scope of Delivery	31
	4.7 Hardware Interface	32
	4.8 Optional Accessories	33
5.TP	P1018	35
	5.1 Overview	35
	5.2 Features	36
	5.3 Technical Data	37
	5.4 Electrical Data	37
	5.5 Mechanical Data	38
	5.6 Scope of Delivery	38
	5.7 Hardware Interface	40
	5.8 Optional Accessories	41
6.TP	P1026P	42

	6.1 Overview	42
	6.2 Features	43
	6.3 Technical Data	44
	6.4 Electrical Data	45
	6.5 Mechanical Data	46
	6.6 Scope of Delivery	46
	6.7 Hardware Interface	47
	6.8 Optional Accessories	48
7.TP	P1034	49
	7.1 Overview	49
	7.2 Features	50
	7.3 Main Functions of FlexRay	51
	7.4 Technical Data	51
	7.5 Electrical Data	53
	7.6 Mechanical Data	54
	7.7 Scope of Delivery	54
	7.8 Hardware Interface	55
	7.9 Optional Accessories	56
8.TP	P1051	57
	8.1 Overview	57
	8.2 Features	58
	8.3 Technical Data	59
	8.4 Mechanical Data	59
	8.5 Scope of Delivery	60
	8.6 Hardware Interface	62
	8.7 Optional Accessories	63
9.Ml	P1013	64
	9.1 Overview	64
	9.2 Features	65
	9.3 Technical Data	66
	9.4 Electrical Data	66
	9.5 Mechanical Data	67
	9.6 Scope of Delivery	67
	9 7 Hardware Interface	69

	9.8 Optional Accessories	70
10.Quick	Start	71
	10.1 System Connection.	71
	10.2 Driver Installation	71
	10.3 Software Overview.	72
	10.4 Software Installation	73
	10.5 Use TSMaster with the Hardware	73
11.Inspec	ction and Maintenance	.75

1. About this User Manual

1.1 Warranty

This document is provided for reference only and does not constitute any form of guarantee or commitment from TOSUN. TOSUN Technology reserves the right to modify the content and data of the document without further notice. TOSUN Technology assumes no responsibility for the accuracy of the document or for any damages arising from the use of the document. TOSUN Technology greatly appreciates for pointing out errors or making suggestions for improvement, so that we can provide more efficient products in the future.

1.2 Copyright

TOSUN Technology retains all rights to this document and its contents. Without the explicit written permission of TOSUN Technology, it is prohibited to copy, distribute, transmit, disseminate, republish, or use any part of this document in any manner.

2.Product Overview

2.1 Multi-channel CAN/LIN Bus Products

	MP1013	TP1013	TP1018	TP1026P	
Channel	2x CAN FD	2x CAN FD	12x CAN FD	1x CAN FD 6x LIN	
Baud Rate	CAN: 125k-1Mbps CAN FD: max 8Mbps LIN: 0-20Kbps				
Transmissi on Rate (CAN)	20000fps	20000fps	20000fps	20000fps	
PC Interface	Mini PCIe interface	Standard PCIe interface	Standard PCIe interface	Standard PCIe interface	
Bus Interface	PH-6 DB9 DB37		DB37	DB9/DB15	
Galvanic Isolation	2500V	2500V	2500V	2500V	
EMC Compatibil ity	ompatibil * EFT: ±1kV Surge: *		EFT: ±2kV Surge: *	EFT: ±2kV Surge: *	
Power Supply	Mini PCIe power supply	PCIe power supply	PCIe power supply	PCIe power supply or DC power supply (12V)	

Dimension	Approx.	Approx.	Approx.	Approx.	
S	s 51*30*10mm 120*11		124*141*22mm	124*141*22mm	
Weight Approx. 8g		Approx. 92g	Approx. 115g	Approx. 100g	

^{*}Surge protection can be achieved through the CAN surge protection device described in 2.4 CAN Surge Protection Device.

The EMC Electromagnetic Compatibility test standards in the table are as follows: for ESD, the test standard complies with IEC61000-4-2; for EFT, the test standard complies with IEC61000-4-4; and for Surge, the test standard complies with IEC61000-4-5.

To meet the market demand for devices with PCIe interface, TOSUN developed the TP series product. As the derivative product of TC and TE series, the TP series leverages the high bandwidth characteristics of the PCIe interface to achieve faster and more stable data transmission. Whether in automotive electronics, industrial automation, or intelligent transportation systems, the TP series provide stable and reliable support.

The TP series has further expanded the application scenarios of TOSUN's equipment. Thanks to its compact design, the TP series can be conveniently embedded in most computing platforms with a PCIe slot, such as in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use.

2.2 Multi-channel CAN FD/FlexRay Bus Products

TP1034

	TP1034		
Channel	2x CAN FD		
	2x FlexRay		
Baud Rate	CAN: 125k-1Mbps		
Daud Rate	CAN FD: max 8Mbps		
Transmission	20000fps		
Rate (CAN)	200001ps		
PC Interface	Standard PCIe interface		
Interface	2x DB9		
Туре	2X DD9		
Galvanic	2500V		
Isolation	2300 V		
EMC	EFT: ±2kV		
Compatibility	Surge: *		
D			
Power	PCIe power supply		
Supply			
Dimension	Approx. 124*141*22mm		

Weight Approx. 112g

*Surge protection can be achieved through the CAN surge protection device described in 2.4 CAN Surge Protection Device.

The EMC Electromagnetic Compatibility test standards in the table are as follows: for ESD, the test standard complies with IEC61000-4-2; for EFT, the test standard complies with IEC61000-4-4; and for Surge, the test standard complies with IEC61000-4-5.

A high-performance CAN FD/FlexRay bus analyzer, designed specifically to meet the testing and analysis needs of high-speed, high-reliability communication networks in the automotive industry.

FlexRay uses dual-line redundancy for data transmission, with each line having its own transmitter and receiver, while also providing extremely low latency and a flexible bandwidth allocation mechanism.

It supports a variety of data types and rich topological structures, and can be used not only as a bus system but also as an element in star or tree network structure.

2.3 Multi-channel Ethernet Interface Products

TP1051

	TP1051
Channel	Standard Ethernet 100Base-Tx, 1000Base-T, or Vehicle Ethernet 100/1000Base-T1

PC Interface	Standard PCIe interface	
Ethernet Interface	RJ45+TE MATEnet or Rosenberger H-MTD	
Timestamp Accuracy	100 us level hardware message timestamp, can meet advanced requirements	
Terminal Resistor	Network transformer / capacitive isolation	
Power Supply	PCIe power supply	
Dimension	Approx. 124*141*22mm	
Weight	Approx. 112g	

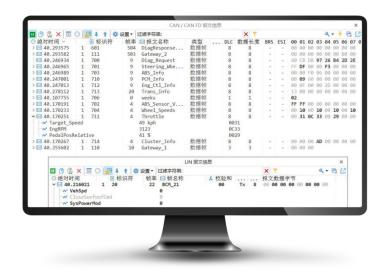
A high-performance hardware device specifically designed for Vehicle Ethernet to achieve data exchange between Vehicle Ethernet and computing platforms. By leveraging the high bandwidth of the PCIe interface, it achieves high-speed transmission of Vehicle Ethernet data. It supports various Ethernet standards, including standard Ethernet 100Base-Tx, 1000Base-T, and Vehicle Ethernet 100/1000Base-T1. Meanwhile, it supports real-time data capture and analysis of Vehicle Ethernet, making it an ideal choice for the development, testing, and validation of automotive networks.

2.4 CAN Surge Protection Device

The CAN surge protection device is a device used to protect the CAN bus system from damage caused by surges (sudden overvoltage or overcurrent). This device does not require an external power source and is designed with a DB9 interface for good compatibility. It is easy to install and can be used immediately without affecting communication quality.

For the TOSUN products that do not support surge protection, you can achieve CAN channel surge protection by installing the TOSUN DB9 surge protection device, model number TCA00011.

Dimension	Approx. 76*38*25mm	
Weight	Approx. 71g	
Surge Protection Level	±2KV	



3.General Information

3.1 Bus Data Collection and Analysis

With the TSMaster software, functions such as message sending/monitoring/replay, bus statistics/logging, digital data/graphic form display and analysis, and so on can be achieved.

Bus Statistics

Bus statistics include: bus load rate, peak load rate, data frame rate, data frame count, error frame rate, error frame count, controller status, and send error count.

Database

Supports loading databases in formats such as DBC, LDF, XML, ARXML, and can display database structure views, signal communication matrix views, and message communication matrix views.

Message Replay

Supports offline and online replay of recorded files in formats such as BLF and ASC.

Message Transmission

Supports manual sending, hotkey sending, and periodic sending. It also supports signal generators and allows for the creation of customized messages and database-based messages.

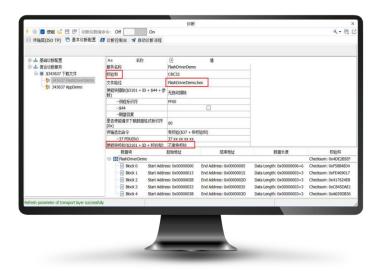
Message Monitoring

Supports multiple display modes, DBC parsing to view signal values, channel filtering, and ID filtering.

Graphical Value Display

The signal's Y-axis is flexible and configurable, supporting multi-axis mode and separated display mode, with the option to precisely display data points, which facilitates user data analysis.

3.2 Bus Simulation



With the TSMaster software, it is possible to achieve multiple buses simulation such as CAN, LIN, and FlexRay. ECU code simulation can also be achieved through soft HIL. The Panel feature built into TSMaster allows bus signals association in the panel to achieve graphical display.

- Supports CAN bus simulation
- Supports LIN bus simulation
- Supports J1939 bus simulation
- Supports FlexRay bus simulation

3.3 Diagnostic

Diagnostic is an important function of automotive ECUs. When the vehicle is in operation, sensors distributed throughout the vehicle can track various potential faults that may occur at any time in the vehicle's electrical or electronic systems. The TOSUN toolchain assists users in conveniently developing and verifying fault diagnosis-related functions, and performing flashing based on the UDS protocol.

• Diagnostic Parameter Configuration

The configuration includes timeout parameter configuration, TesterPresent configuration, and SeedKey DLL configuration. With a built-in SeedKey algorithm editor, user can implement SeedKey algorithms directly without the need for external development tools.

Basic Diagnostic Configuration

Users can edit the diagnostic database by themselves, including: the settings for various services, the parameters related to requests and responses and so so.

Diagnostic Console

Execute the configured diagnostic services, and user can set up automatic comparison to

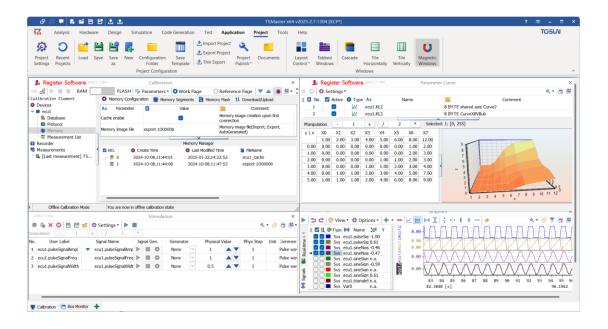
check if the response results are correct.

Automated Diagnostic Process

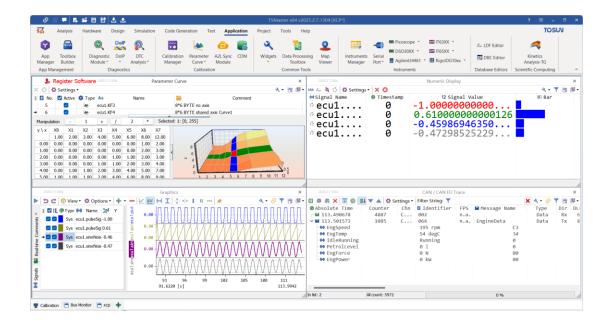
Customize diagnostic processes and diagnostic services to facilitate the creation of various Flash Bootloader flashing processes

3.4 Calibration

CCP: It is a communication protocol based on CAN (Controller Area Network), mainly used for the calibration and parameter settings of ECUs. It provides the ability to read and write ECU, allowing engineers to read the current parameter values, set new parameter values, and perform real-time testing and adjustments.


XCP: It is a universal measurement and calibration protocol applicable to various communication interfaces such as CAN and Ethernet. It offers higher transmission rates and more robust capabilities, allowing engineers to quickly read and write large volumes of data in a short period and perform advanced diagnostics and debugging operations.

Automotive calibration is a technique used in the development and diagnostics of automotive



ECUs, which involves adjusting the parameters and calibration values of the ECU to optimize the vehicle's performance and functionality. CCP and XCP are common communication protocols used for communication with the ECU, and reading and modifying parameters. These technologies and tools enable vehicle manufacturers and engineers to better perform vehicle tuning and calibration work.

- Supports importing A2L files;
- Supports DAQ/Polling measurement;
- Memory settings, capable of loading images and configuring verification methods, etc;
- Supports characteristic parameter curves, MAP diagrams, etc;
- Supports MDF/MF4 file storage and playback;
- Supports graphical display of variable curves;
- Supports calibration parameter management in par or hex format;
- Built-in message information analysis, diagnostics, calibration, and system variable data are integrated into one, which facilitates a streamlined process of data analysis;
- Automated calibration functions can also be achieved by calling system variables;
- Supports single and multiple file downloads.

3.5 DoIP Function

The in-vehicle Ethernet diagnostic protocol, known as Diagnostics over Internet Protocol (DoIP), allows for automotive diagnostics through the Ethernet protocol. DoIP is a standard protocol for communication and diagnostics between vehicles or between vehicles and diagnostic equipment. With DoIP, diagnostic engineers can access and diagnose the vehicle's electronic systems via Ethernet or remotely, and can perform diagnostic access and flashing of Ethernet controllers.

• Supports remote access and diagnostics

Achieve remote access and diagnostics of the vehicle's electronic systems via Ethernet, including performing diagnostic access and flashing of Ethernet controllers.

• Diagnostics transport layer configuration

Offers flexible configuration for the diagnostics transport layer, including setting parameters for different types of diagnostic devices and network interfaces.

• Scalability and flexibility

DoIP has good scalability and flexibility, which allows it to be customized and configured according to specific diagnostic requirements and network topology.

• Improve diagnostic efficiency

Diagnosing via Ethernet protocol can enhance diagnostic efficiency and data transmission speed.

• Supports automated diagnostic processes

TSMaster provides automatic diagnostic process functionality, which can help users quickly perform diagnostic tasks, and offers a diagnostic console and automated diagnostic processes.

• Supports multiple hardware devices

To meet the needs of different application scenarios, a variety of hardware devices that support DoIP functions can be used, such as TE1051, TC1051, TC1054, etc.

3.6 Secondary Development

TSMaster provides a rich API library, allowing users to perform secondary development for TSCAN series tools based on different programming languages, calling API functions to achieve programmatic control of the devices, in order to add new functions and meet specific requirements.

- libTSCAN API C#
- libTSCAN API C and C++
- libTSCAN API Python
- .

4.TP1013

4.1 Overview

TP1013 converts a 2-channel CAN FD bus to PCIe. It is ideal for the development, simulation, and testing of CAN FD/CAN networks.

TP1013 allows a computer with a PCIe slot to easily connect to a CAN/CAN FD bus network, enabling real-time monitoring of multiple bus networks. It has a compact size, and can be conveniently embedded into in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use.

With the powerful TSMaster software, it is very convenient to monitor, analyze, and simulate CAN FD bus data. It also supports functions such as UDS diagnostics, ECU flashing, CCP/XCP calibration and so on.

The secondary development APIs for Windows and Linux can support various development environments such as C++, C#, LabView, Python, etc., making it highly efficient and easy to use, and is convenient to integrate into various testing systems.

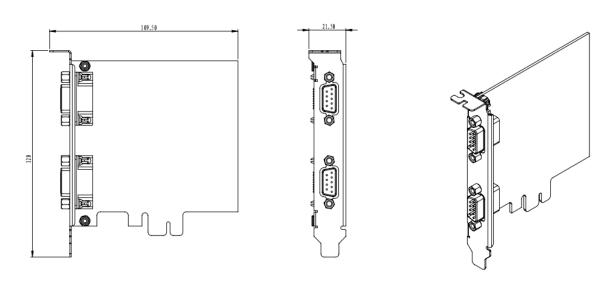
4.2 Features

- ✓ us (microsecond) level hardware message timestamps to meet advanced requirements;
- ✓ Standard PCIe interface, with a driverless design for Windows and Linux systems, offering excellent system compatibility;
- ✓ CAN channel DC 2500V isolation;
- ✓ Automotive-grade design, supporting dbc files, a21 files, blf files, and asc files;
- ✓ CAN channel baud rate adjustable from 125Kbps to 1Mbps, and CAN FD supports a maximum of 8Mbps;
- ✓ Supports blf and asc format data recording and offline/online playback;
- ✓ Supports UDS diagnostics and CCP/XCP calibration;
- ✓ Supports UDS based Bootloader flashing;
- ✓ Supports secondary development interfaces for Windows and Linux systems;
- ✓ Built-in 120-ohm terminal resistor, with the resistance value configurable through software;
- ✓ Capable of loading all paid licenses for TSMaster.

4.3 Technical Data

Channel	2 *CAN FD	
PC Interface	Standard PCIe interface	
CAN Interface	DB9	
Driver Driver Driver System compatibility		
Cache	Hardware cache, with each channel's transmission buffer supporting up to 1000 CAN frames	
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1 standard, with baud rates from 125Kbps to 1Mbps	
CAN FD	Supports CAN FD that complies with both ISO and non-ISO standards, with baud rates from 125Kbps to 8Mbps	
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements	
Terminal Resistor Built-in 120-ohm terminal resistor, with the resistance value configuent through software		
Messages Sent per Second*	Up to 20,000 frames per second	
Messages Received per Second*	Up to 20,000 frames per second	
Galvanic Isolation	CAN channel DC 2500V isolation	
Power Supply	PCIe power supply	
Dimension	Approx. 120*110*22mm	
Weight	Approx. 92g (without packaging)/Approx. 253g (with packaging)	
Operating Humidity	$10\% \sim 90\%$ (non-condensing)	
Operating Environment	Keep away from corrosive gases	

^{*}Single channel 1Mbps, with a 0-byte data field.


4.4 Electrical Data

Parameter		Test Condition	Minimum Value	Typical Value	Maximu m Value	Unit
CAN Interface	Bus pin voltage resistance	CANH, CAHL	-58		58	V

	Terminal resistor	Terminal resistor enabled		120		Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500	-	-1-	VDC
EMC Compatibilit y	EFT	IEC61000-4-4 standard	1	1	1	kV

4.5 Mechanical Data

4.6 Scope of Delivery

✓ Main device: TP1013

- ✓ Shield retaining screw * 2
- ✓ Screwdriver * 1

4.7 Hardware Interface

- > Standard PCIe interface;
- DB9 male:

DB9 Pin	PIN	Definition	
	Number		
	PIN2	CAN FD_Low	

	PIN3	CAN FD_GND
8 0 0 3 4 5 6 5	PIN7	CAN FD_High

4.8 Optional Accessories

1.TCA00011 (CAN surge protection device)

5.TP1018

5.1 Overview

TP1018 is developed by TOSUN to convert a 12-channel CAN FD bus to PCIe. It supports rates up to 8 Mbps and supports real-time monitoring of multiple bus networks. The product features a driverless design for Windows and Linux systems to ensure excellent system compatibility. It has a compact size, and can be conveniently embedded into in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use

With the powerful TSMaster software, it supports loading DBC and ARXML database files, making it very convenient to monitor, analyze, and simulate CAN FD bus data, and it also supports functions such as UDS diagnostics, ECU flashing, CCP/XCP calibration, etc.

The secondary development APIs for Windows and Linux can support various development environments such as C++, C#, LabView, Python, etc., making it highly efficient and easy to use, and is convenient to integrate into various testing systems.

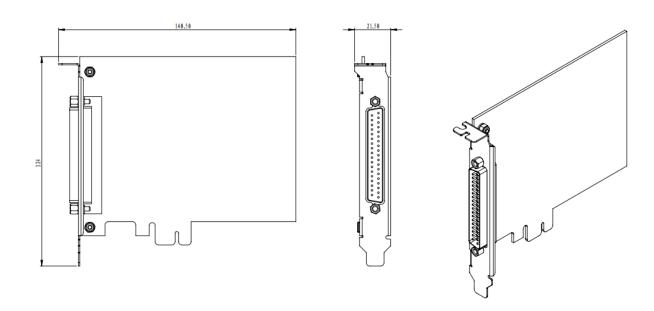
5.2 Features

- ✓ us (microsecond) level hardware message timestamps to meet advanced requirements;
- ✓ Standard PCIe interface, with a driverless design for Windows and Linux systems, offering excellent system compatibility;
- ✓ CAN channel DC 2500V isolation;
- ✓ Automotive-grade design, supporting dbc files, a21 files, blf files, asc files, and arxml files;
- ✓ CAN channel baud rate adjustable from 125Kbps to 1Mbps, and CAN FD supports a maximum of 8Mbps;
- ✓ Supports blf and asc format data recording and offline/online playback;
- ✓ Supports UDS diagnostics and CCP/XCP calibration;
- ✓ Supports UDS based Bootloader flashing;
- ✓ Supports information security testing;
- ✓ Supports secondary development interfaces for Windows and Linux systems;
- ✓ Built-in 120-ohm terminal resistor, with the resistance value configurable through software;
- ✓ Capable of loading all paid licenses for TSMaster.

5.3 Technical Data

Channel	12 *CAN FD
PC Interface	Standard PCIe interface
CAN Interface	DB37
Driver	Driverless design for Windows and Linux systems, offering excellent system compatibility
Cache	Hardware cache, with each channel's transmission buffer supporting up to 700 CAN frames
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1 standard, with baud rates from 125Kbps to 1Mbps
CAN FD	Supports CAN FD that complies with both ISO and non-ISO standards, with baud rates from 125Kbps to 8Mbps
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements
Terminal Resistor	Built-in 120-ohm terminal resistor, with the resistance value configurable through software
Messages Sent per Second*	Up to 20,000 frames per second
Messages Received per Second*	Up to 20,000 frames per second
Galvanic Isolation	CAN channel DC 2500V isolation
Power Supply	PCIe power supply
Dimension	Approx. 124*141*22mm
Weight	Approx. 115g (without packaging)/Approx. 782g (with packaging)
Operating Humidity	$10\% \sim 90\%$ (non-condensing)
Operating Environment	Keep away from corrosive gases

^{*}Single channel 1Mbps, with a 0-byte data field.


5.4 Electrical Data

Parameter		Test Condition	Minimum Value	Typical Value	Maximu m Value	Unit
CAN Interface	Bus pin voltage	CANH, CAHL	-58		58	V

	resistance					
	Terminal resistor	Terminal resistor enabled		120		Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500	ŀ	1	VDC
EMC Compatibilit y	EFT	IEC61000-4-4 standard	2			kV

5.5 Mechanical Data

5.6 Scope of Delivery

✓ Main device: TP1018

- ✓ Shield retaining screw * 2
- ✓ Screwdriver * 1

✓ DB37 female to 12 male signal cable

5.7 Hardware Interface

> Standard PCIe interface;

DB37 male:

PIN	Definition	PIN	Definition
Number		Number	
DINIO	CAN	PIN1	CAN
PIN20	FD1_High	PINI	FD1_Low
PIN21	CAN	PIN2	CAN FD GND
1 111/21	FD_Shield	1 111/2	CAN I'D_GIND
PIN22	CAN	PIN3	CAN
FINZZ	FD2_High	FINS	FD2_Low
PIN23	CAN	PIN4	CAN
PINZS	FD3_High	F11N4	FD3_Low
PIN24	CAN	PIN5	CAN FD_GND
PIN24	FD_Shield	PINS	CAN FD_GND
DINIOS	CAN	PIN6	CAN
PIN25	FD4_High	PINO	FD4_Low
PIN26	CAN	PIN7	CAN
FINZO	FD5_High	FIIN/	FD5_Low
PIN27	CAN	PIN8	CAN FD GND
FIN2/	FD_Shield	FINO	CAN FD_GND
PIN28	CAN	PIN9	CAN
PINZO	FD6_High	FIN9	FD6_Low
PIN29	CAN	PIN10	CAN
F11N29	FD7_High	FINIU	FD7_Low
DINI20	CAN		CAN FD_GND
PIN30	FD_Shield	PIN11	CAN FD_GND

DDI21	CAN	DD112	CAN
PIN31	FD8_High	PIN12	FD8_Low
PIN32	CAN	PIN13	CAN
PIN32	FD9_High	PINIS	FD9_Low
PIN33	CAN	PIN14	CAN FD GND
PIN33	FD_Shield	P1N14	CAN FD_GND
PIN34	CAN	PIN15	CAN
F11N54	FD10_High	FINIS	FD10_Low
PIN35	CAN	PIN16	CAN
PINSS	FD11_High	FINIO	FD11_Low
PIN36	CAN	PIN17	CAN FD GND
PINSO	FD_Shield	FIN1/	CAN FD_GND
PIN37	CAN	PIN18	CAN
PIN3/	FD12_High	PINIO	FD12_Low
		PIN19	CAN FD_GND

5.8 Optional Accessories

1.TCA00011 (CAN surge protection device)

6.TP1026P

6.1 Overview

TP1026P interface card allows a computer with a PCIe slot to easily connect to a LIN/CAN/CAN FD bus network, enabling real-time monitoring of multiple bus networks.

TP1026P converts an 1-channel CAN FD and a 6-channel LIN to PCIe. It has a compact size, and can be conveniently embedded into in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use.

With the powerful TSMaster software, it is very convenient to monitor, analyze, and simulate LIN and CAN FD bus data. It also supports functions such as UDS diagnostics, ECU flashing and so on.

The secondary development APIs for Windows and Linux can support various development environments such as C++, C#, LabView, Python, etc., making it highly efficient and easy to use, and is convenient to integrate into various testing systems.

6.2 Features

- ✓ us (microsecond) level hardware message timestamps to meet advanced requirements;
- ✓ Standard PCIe interface, with a driverless design for Windows and Linux systems, offering excellent system compatibility;
- ✓ CAN channel DC 2500V isolation;
- ✓ Automotive-grade design, supporting LDF, dbc files, a2l files, blf files, asc files, and arxml files;
- ✓ CAN channel baud rate adjustable from 125Kbps to 1Mbps, and CAN FD supports a

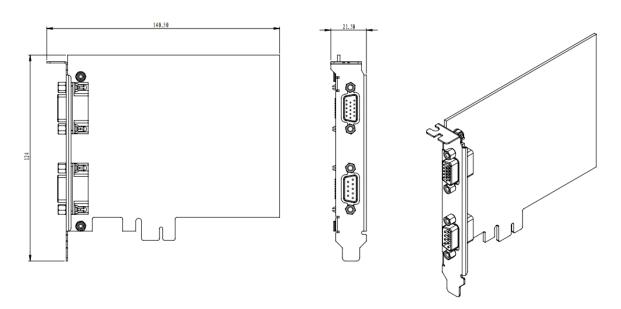
maximum of 8Mbps;

- ✓ The LIN bus primary and secondary nodes can be configured via software;
- ✓ Supports blf and asc format data recording and offline/online playback;
- ✓ Supports UDS diagnostics and CCP/XCP calibration;
- ✓ Supports UDS based Bootloader flashing;
- ✓ Supports LIN bus based UDS diagnostics;
- ✓ Supports information security testing;
- ✓ Supports secondary development interfaces for Windows and Linux systems;
- ✓ Built-in 120-ohm terminal resistor, with the resistance value configurable through software;
- ✓ Capable of loading all paid licenses for TSMaster.

6.3 Technical Data

Channel	1 *CAN FD/6 *LIN
PC Interface	Standard PCIe interface
CAN/LIN Interface	DB9/DB15
Driver	Driverless design for Windows and Linux systems, offering excellent system compatibility
Cache	Hardware cache, with each channel's transmission buffer supporting up to 1000 CAN frames
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1 standard, with baud rates from 125Kbps to 1Mbps
CAN FD	Supports CAN FD that complies with both ISO and non-ISO standards, with baud rates from 125Kbps to 8Mbps
LIN	Supports LIN 1.3 and 2.0, with baud rate from 0 to 20Kbps
Schedule Table	Supports LDF files and running schedule tables, and also allows for self-configuration of schedule tables
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements
Terminal Resistor	Built-in 120-ohm terminal resistor, with the resistance value configurable through software
Messages Sent per Second*	Up to 20,000 frames per second
Messages Received per Second*	Up to 20,000 frames per second
Galvanic Isolation	CAN channel DC 2500V isolation
Power Supply	PCIe power supply
Dimension	Approx. 124*141*22mm
Weight	Approx. 94g (without packaging)/Approx. 328g (with packaging)

Operating Humidity	10% ~ 90% (non-condensing)
Operating Environment	Keep away from corrosive gases


^{*}Single channel 1Mbps, with a 0-byte data field.

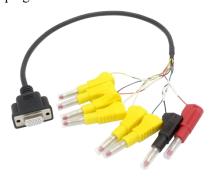
6.4 Electrical Data

Parameter		Test Condition	Minimum Value	Typical Value	Maximu m Value	Unit
	Bus pin voltage resistance	CANH, CAHL	-58		58	V
CAN Interface	Terminal resistor	Terminal resistor enabled		120		Ω
withsta	Isolation withstand voltage	Leakage current less than 1mA	2500	-1		VDC
LIN Interface	Bus pin voltage resistance	LIN1、LIN2 LIN3、LIN4 LIN5、LIN6	-40		40	V
EMC Compatibilit y	EFT	IEC61000-4-4 standard	2			kV

6.5 Mechanical Data

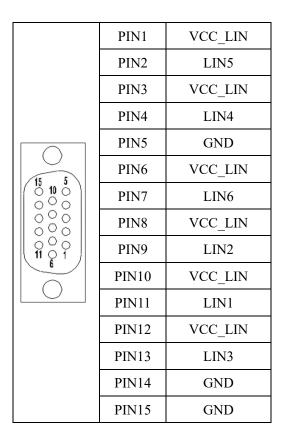
6.6 Scope of Delivery

✓ Main device: TP1026P


- ✓ Shield retaining screw * 2
- ✓ Screwdriver * 1

✓ DB9 female to 2 male signal cable

 \checkmark DB15 female to 8 banana plugs cable


6.7 Hardware Interface

- > Standard PCIe interface;
- DB15 male:

DB15 PIN	PIN	Definition
	Number	

DB9 male:

DB9 PIN	PIN	Definition
	Number	
\bigcirc	PIN2	CAN FD_Low
$\begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \\ 0 & \circ \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	PIN3	CAN FD_GND
7 8 0 0 0 2 3 4 5	PIN5	CAN
\bigcirc		FD_Shield
	PIN7	CAN FD_High

6.8 Optional Accessories

1.TCA00011 (CAN surge protection device)

7.TP1034

7.1 Overview

TP1034 is a high-performance multi-channel CAN FD and FlexRay bus interface device launched by TOSUN Technology. The CAN FD bus rate supports up to 8 Mbps, and FlexRay uses a dual-line redundant method for data transmission, providing very low latency and flexible bandwidth allocation mechanism. It supports various data types and rich topological structures, and can be used as a bus system or as an element in star/tree network structure. The product uses a standard PCIe interface to connect with the PC and features a driverless design for Windows and

Linux systems, ensuring excellent system compatibility.

With the powerful TSMaster software, it supports loading DBC and ARXML database files, making it very convenient to monitor, analyze, and simulate CAN FD/FlexRay bus data, and it also supports functions such as UDS diagnostics, ECU flashing, CCP/XCP calibration, etc. It can also easily handle tasks such as FlexRay network development, simulation, testing, etc.

The secondary development APIs for Windows and Linux can support various development environments such as C++, C#, LabView, Python, etc., making it highly efficient and easy to use, and is convenient to integrate into various testing systems.

7.2 Features

- ✓ us (microsecond) level hardware message timestamps to meet advanced requirements;
- ✓ Standard PCIe interface, with a driverless design for Windows and Linux systems, offering

- excellent system compatibility;
- ✓ CAN channel DC 2500V isolation;
- ✓ Automotive-grade design, supporting dbc files, a21 files, blf files, asc files, and arxml files;
- ✓ CAN channel baud rate adjustable from 125Kbps to 1Mbps, and CAN FD supports a maximum of 8Mbps;
- ✓ Supports blf and asc format data recording and offline/online playback;
- ✓ Supports UDS diagnostics and CCP/XCP calibration;
- ✓ Supports UDS based Bootloader flashing;
- ✓ For CAN, built-in 120-ohm terminal resistor, with the resistance value configurable through software:
- ✓ For FlexRay, built-in 100-ohm terminal resistor, with the resistance value configurable through software;
- ✓ Auxiliary communication controller, eliminating the need to add extra nodes during cold starts;
- ✓ Perfectly adapts to FlexRay, CAN/CAN FD bus applications based on TSMaster;
- ✓ Supports secondary development interfaces for Windows and Linux systems;

7.3 Main Functions of FlexRay

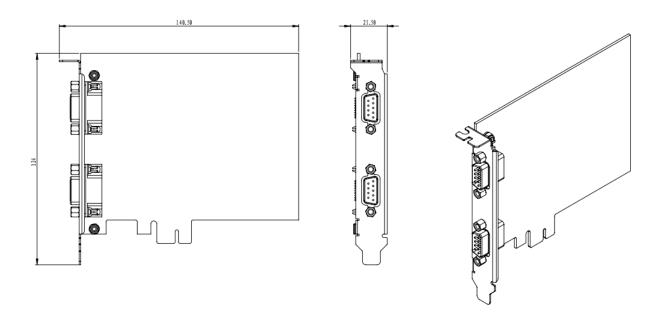
- > Flexible configuration for communication controller buffer;
- > Capable to detect empty frame;
- > Capable of forming composite communication modes through multiple cycles (Cycle multiplexing);
- Supports frame payloads up to a maximum of 254 bytes;
- > Supports PDUs;
- Features a start-up monitoring function;
- Supports FlexRay message recording and replay;
- > Supports using two FlexRay channels as two separate FlexRay nodes (parallel connected).

7.4 Technical Data

Channel 2 *FlexRay/2 *CAN FD

PC Interface	Standard PCIe interface
CAN/FlexRay Interface	DB9
Driver	Driverless design for Windows and Linux systems, offering excellent system compatibility
FlexRay	FlexRay channel (A and B)
Cold Start	Supported
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1 standard, with baud rates from 125Kbps to 1Mbps
CAN FD	Supports CAN FD that complies with both ISO and non-ISO standards, with baud rates from 125Kbps to 8Mbps
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements
CAN Terminal Resistor	Built-in 120-ohm terminal resistor, with the resistance value configurable through software
FlexRay Terminal Resistor	Built-in 100-ohm terminal resistor, with the resistance value configurable through software
Messages Sent per Second*	Up to 20,000 frames per second
Messages Received per Second*	Up to 20,000 frames per second
Galvanic Isolation	CAN channel DC 2500V isolation
Power Supply	PCIe power supply
Dimension	Approx. 124*141*22mm
Weight	Approx. 112g (without packaging)/Approx. 423g (with packaging)
Operating Humidity	10% ~ 90% (non-condensing)
Operating Environment	Keep away from corrosive gases

^{*}Single channel 1Mbps, with a 0-byte data field.



7.5 Electrical Data

Parameter		Test Condition	Minimum Value	Typical Value	Maximu m Value	Unit
	Bus pin voltage resistance	CANH, CAHL	-58		58	V
CAN Interface	Terminal resistor	Terminal resistor enabled		120		Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500	1	1	VDC
	Bus pin voltage resistance	FlexRay_BM、 FlexRay_BP	-60	-1-	60	V
FlexRay Interface	Terminal resistor	Terminal resistor enabled		100	ı	Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500		ł	VDC
EMC Compatibilit y	EFT	IEC61000-4-4 standard	2		-	kV

7.6 Mechanical Data

7.7 Scope of Delivery

✓ Main device: TP1034

- ✓ Shield retaining screw * 2
- ✓ Screwdriver * 1

✓ DB9 female to dual male signal cable (CAN)

✓ DB9 female to dual male signal cable (FlexRay)

7.8 Hardware Interface

> Standard PCIe interface;

DB9 male:

DB9 PIN	Channel	PIN	Definition	Channel	PIN	Definition
		Number			Number	
		PIN1	Flexray_BM2		PIN2	CAN
						FD1_Low
		PIN2	Flexray_BM1		PIN3	CAN FD_GND
$\begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \\ 0 & \circ \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$		PIN3	Flexray_GND		PIN4	CAN
6 7 8 9 0 0 1 2 3 4 5	Flexray			CANED		FD2_Low
\bigcirc	1/2	PIN4	Flexray_BM3	CAN FD 1/2	PIN5	CAN
				1/2		FD_Shield
		PIN5	Flexray_BM4		PIN7	CAN
						FD1_High
		PIN6	Flexray_BP2		PIN8	CAN
						FD2_High
		PIN7	Flexray_BP1			
		PIN8	Flexray_BP3			
		PIN9	Flexray_BP4			

7.9 Optional Accessories

1.TCA00011 (CAN surge protection device)

8.TP1051

8.1 Overview

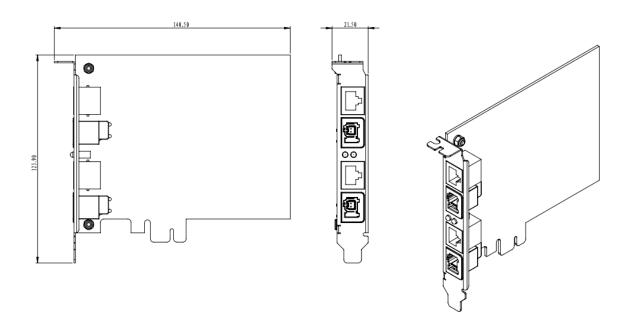
TP1051 converts two Ethernet interfaces to a PCIe interface. Users can transmit either standard Ethernet 100Base-Tx/1000Base-T data or Vehicle Ethernet 100/1000Base-T1 data to a PC via the PCIe interface, and achieve Ethernet data simulation, analysis, and testing through the TSMaster software. It can also realize functions such as DoIP and SOME/IP.

TP1051 allows a computer with a PCIe slot to easily connect to Vehicle Ethernet network. It has a compact size, and can be conveniently embedded into in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use.

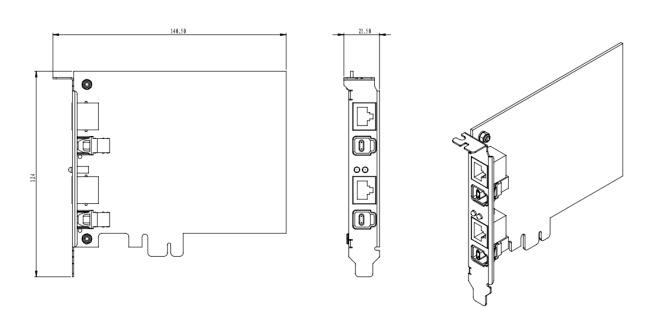
8.2 Features

- > us (microsecond) level hardware message timestamps to meet advanced requirements;
- ➤ PCIe interface, with a driverless design for Windows 10/11, driver installation is required for Windows 7;
- Two Ethernet interfaces for standard Ethernet 100Base-Tx/1000Base-T or Vehicle Ethernet 100/1000Base-T1, with the mode configurable through software;
- ➤ Vehicle Ethernet interface: TE MATEnet and Rosenberger H-MTD;
- Automotive-grade design, supports loading arxml files in TSMaster and analyzing Vehicle Ethernet packets;
- Supports DoIP and SOMEIP;
- > Supports secondary development interfaces for Windows and supports Ethernet with

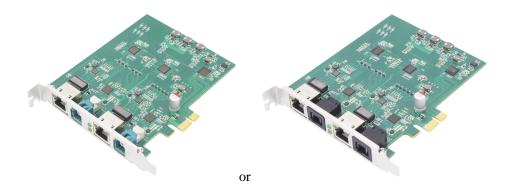
- timestamps, facilitating secondary development;
- > Supports the transmission and reception of Ethernet packets in RAW format with timestamps, as well as sending completion events, and supports the modification of the packet's CRC;
- Supports hardware MAC filtering and software VLAN filtering;
- ➤ Provides TCP/IP sample projects based on API interfaces;
- The maximum loopback rate is approximately 7 Mbytes (full duplex).


8.3 Technical Data

Channel	Standard Ethernet 100Base-Tx 1000Base-T or Vehicle Ethernet 100/1000Base-T1		
PC Interface	Standard PCIe interface		
Ethernet Interface	RJ45+TE MATEnet or Rosenberger H-MTD		
Driver	Driverless design for Windows 10/11, and driver installation is required for Windows 7		
Timestamp Accuracy	100 us level hardware message timestamp, can meet advanced requirements		
Galvanic Isolation	Network transformer / capacitive isolation		
Power Supply	PCIe power supply		
Dimension	Approx. 124*141*22mm		
Weight	Approx. 83g (without packaging)/Approx. 306g (with packaging)		
Operating Temperature	-40°C∼80°C		
Operating Humidity	10% ~ 90% (non-condensing)		
Operating Environment	Keep away from corrosive gases		


8.4 Mechanical Data

TP1051 MATEnet:

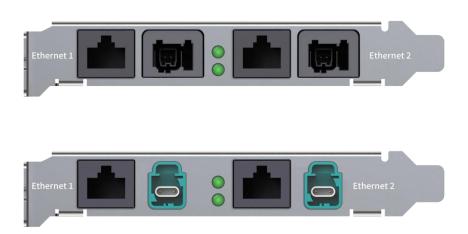

TP1051 H-MTD:

8.5 Scope of Delivery

✓ Main device: TP1051

- ✓ Shield retaining screw * 2
- ✓ Screwdriver * 1
- ✓ Category 6 Gigabit Ethernet cable

✓ MATENET Ethernet cable (optional)



✓ Rosenberger Ethernet cable (optional)

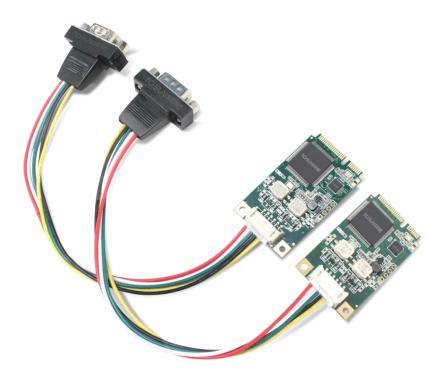
8.6 Hardware Interface

- > Standard PCIe interface;
- ➤ Ethernet interface (MATENET or Rosenberger)

8.7 Optional Accessories

N/A.

9.MP1013


9.1 Overview

MP1013 is a dual-channel CAN FD bus interface device developed by TOSUN. The CAN FD bus rate can support up to 8 Mbps. The product enables real-time monitoring of multiple bus networks. It uses a mini PCIe interface to connect with the PC and features a driverless design for Windows and Linux systems, ensuring excellent system compatibility. It has a compact size, and can be conveniently embedded into in-vehicle industrial PC, single-board computer (SBC), portable industrial PC, and industrial laptop. It is easy to install and simple to use.

With the powerful TSMaster software, it is very convenient to monitor, analyze, and simulate CAN FD bus data. It also supports functions such as UDS diagnostics, ECU flashing, CCP/XCP calibration and so on.

The secondary development APIs can support various development environments such as C++, C#, LabView, Python, etc., making it highly efficient and easy to use, and is convenient to integrate into various testing systems.

9.2 Features

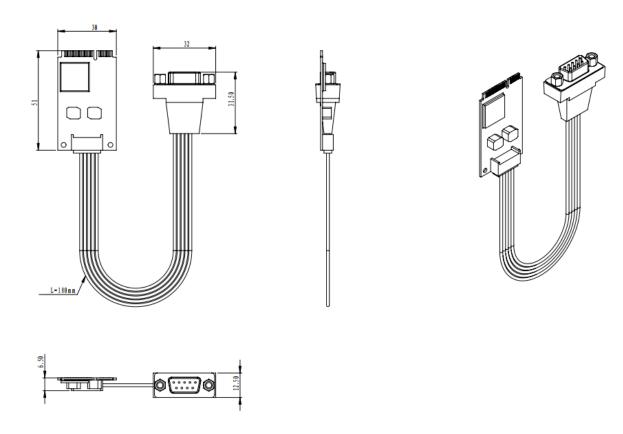
- > us (microsecond) level hardware message timestamps to meet advanced requirements;
- Mini PCIe interface, with a driverless design for Windows and Linux systems, offering excellent system compatibility;
- CAN channel DC 2500V isolation;
- Automotive-grade design, supporting dbc files, a2l files, blf files, and asc files;
- CAN channel baud rate adjustable from 125Kbps to 1Mbps, and CAN FD supports a maximum of 8Mbps;
- > Supports blf and asc format data recording and offline/online playback;
- > Supports UDS diagnostics and CCP/XCP calibration;
- Supports UDS based Bootloader flashing;
- > Supports secondary development interfaces for Windows and Linux systems;

> Capable of loading all paid licenses for TSMaster.

9.3 Technical Data

Channel	2 *CAN FD
PC Interface	Mini PCIe interface
CAN Interface	DB9
Driver	Driverless design for Windows and Linux systems, offering excellent system compatibility
Cache	Hardware cache, with each channel's transmission buffer supporting up to 1000 CAN frames
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1 standard, with baud rates from 125Kbps to 1Mbps
CAN FD	Supports CAN FD that complies with both ISO and non-ISO standards, with baud rates from 125Kbps to 8Mbps
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements
Messages Sent per Second*	Up to 20,000 frames per second
Messages Received per Second*	Up to 20,000 frames per second
Galvanic Isolation	CAN channel DC 2500V isolation
Power Supply	Mini PCIe power supply
Dimension	Approx. 51*30*10mm
Weight	Approx. 8g (without packaging)/Approx. 144g (with packaging)
Operating Humidity	10% ~ 90% (non-condensing)
Operating Environment	Keep away from corrosive gases

^{*}Single channel 1Mbps, with a 0-byte data field.


9.4 Electrical Data

Parameter	Test Condition	Minimum Value	Typical Value	Maximu m Value	Unit	
-----------	----------------	------------------	------------------	-------------------	------	--

CAN	Bus pin voltage resistance	CANH, CAHL	-58	1	58	V
Interface	Isolation withstand voltage	Leakage current less than 1mA	2500	1	1	VDC

9.5 Mechanical Data

9.6 Scope of Delivery

✓ Main device: MP1013

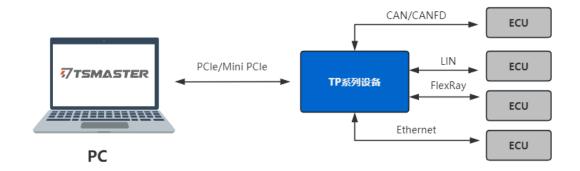
✓ DB9 male to PH-6 interface cable

9.7 Hardware Interface

- Mini PCIe interface;
- DB9 male (After conversion to the PH-6 interface):

DB9 PIN	PIN	Definition
	Number	
	PIN2	CAN
		FD1_Low
6 0 0 1 2 3 4 5	PIN3	CAN FD_GND
8 0 0 4 5	PIN4	CAN
		FD2_Low
	PIN5	CAN
		FD_Shield
	PIN7	CAN
		FD1_High
	PIN8	CAN
		FD2_High

9.8 Optional Accessories


1.TCA00011 (CAN surge protection device)

10.Quick Start

10.1 System Connection

Connect the TP series devices to the computer via PCIe or Mini PCIe interface, and connect the communication interface to the ECU. With the powerful TSMaster software on the PC side, user can control the device to communicate with the ECU using CAN/CAN FD, LIN, FlexRay, and Ethernet protocols. The CAN/CAN FD interface of the TP series (except MP1013) devices comes with a software-configurable 120Ω terminal resistor, eliminating the need for additional terminal resistor installation.

10.2 Driver Installation

All TOSUN hardware adopts a driverless design, offering excellent system compatibility. The hardware allows for direct use on various operating systems (Windows 7/8/10/11, Linux) without the need to install drivers.

10.3 Software Overview

TSMaster is a powerful and comprehensive tool that can connect, configure, and control all TOSUN hardware tools and devices, enabling functions such as automotive bus embedded code generation, monitoring, simulation, development, UDS diagnostics, CCP/XCP calibration, ECU flashing, I/O control, test measurement, and so on.

TSMaster supports Matlab Simulink co-simulation and CarSim dynamic model ECU algorithm simulation testing (soft real-time HIL). It provides users with a series of convenient functions and editors, allowing them to directly execute ECU code within TSMaster and supports C script and Python script editing. At the same time, TSMaster also offers a mini-program function, enabling users to customize the simulation test panel, test process, test logic, and even the entire test system, and automatically generate reports. The code written by users based on TSMaster is hardware-independent, and can be easily shared, referenced, and used on different hardware platforms.

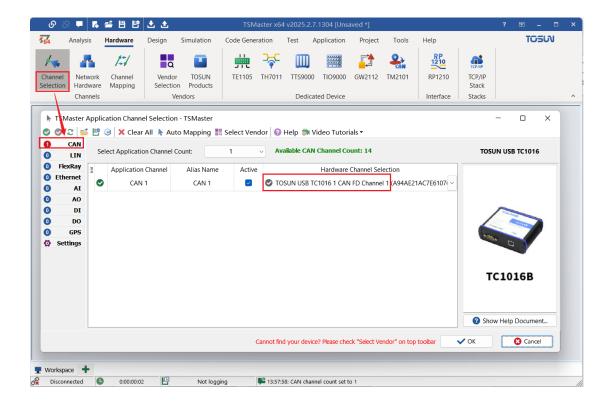
TSMaster supports multiple commonly used bus tool brands, including Vector, Kvaser, PEAK, IXXAT, as well as mainstream instruments in the market (such as oscilloscopes, waveform generators, and digital multimeters) and boards (such as AI, DI, DO, etc.). Its design concept is to perfectly integrate with the test system to achieve joint simulation and testing of multiple hardware and multiple channels. This enables TSMaster to meet the PV/DV test verification needs for various automotive electronic components and assemblies, as well as the inspection requirements for the production line.

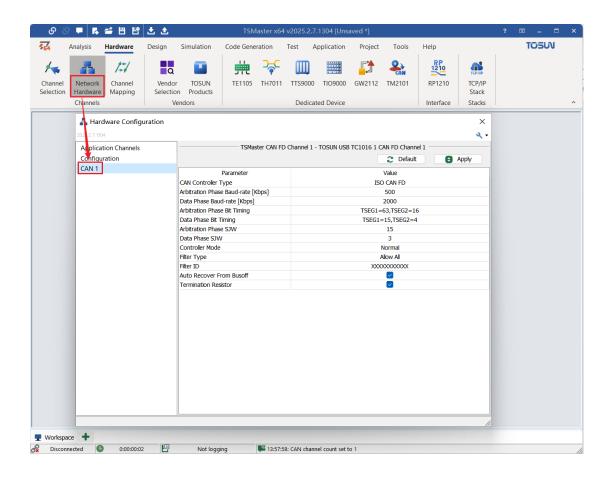
10.4 Software Installation

TSMaster software download link:

https://www.tosunai.com/downloads

If the link is not accessible, you can contact the corresponding sales personnel or visit the official TOSUN website to obtain the software. Meanwhile, you can scan the QR code to follow the TOSUN official account to get the download link.


After the installation, you can see the following software on the PC.


10.5 Use TSMaster with the Hardware

In TSMaster, click Hardware-Channel Selection. In the channel selection GUI, select the device you want to connect.

In Network Hardware, a series of controller parameters can be configured, such as protocol, baud rate, controller mode, and whether to enable the terminal resistor.

After the configuration, click Analysis->Start and connect the hardware to efficiently carry out works such as bus development, testing, ECU production line, etc. with the powerful TSMaster software. For more detailed instructions on using the TSMaster software, please refer to the TSMaster software manual and the quick start guide.

11. Inspection and Maintenance

The main electrical components of TP series products are semiconductor components. Although the equipment has a long service life, they may also accelerate aging and significantly reduce their service life under an incorrect environment. Therefore, during the use of the equipment, periodic inspection should be carried out to ensure that the use environment maintains the required conditions.

It is recommended to conduct inspections at least once every 6 months to 1 year. Under improper environmental, more frequent inspections should be conducted. As shown in the table below, if you encounter problems during maintenance, please read the following content to find the possible causes of the problem. If the problem still cannot be solved, please contact Shanghai TOSUN Technology Ltd.

Item	Inspection	Standard	Action
Surrounding Environment	Check the ambient temperature of the surrounding environment. (Including the internal temperature of enclosed environments)	-40°C~+80°C	Use a thermometer to check the temperature and ensure that the ambient temperature within in the acceptable range.
	Check the ambient humidity.	The relative	Use a hygrometer to check
	(Including the internal	humidity must be	the humidity and ensure that

	humidity of enclosed	within the range	the ambient humidity within
	environments)	of 10% to 90%.	the acceptable range.
	Check for the accumulation of dust, powder, salt, and metal shavings	No accumulation	Clean and protect the equipment.
	Check for any contact with water, oil, or chemical sprays on the equipment	No contact	Clean and protect the equipment if necessary
	Check for the presence of corrosive or flammable gases in the equipment area	No presence	Inspect by the smell, or using a sensor.
	Check for levels of vibration and shock	Vibration and shock are within the acceptable range	Install padding or other shock-absorbing devices if necessary.
	Check for noise sources near the equipment	No significant noise source	Isolate the equipment from noise sources or protect the equipment.
Wiring	Check the crimped connectors in the external wiring	Ensure enough space between the connectors	Visually inspect and adjust if necessary.
Installation	Check for damage in the external wiring	No damage	Visually inspect and replace the wiring if necessary.

TOSW

Engineer Everything!

Software

Support CAN(FD)/LIN/FlexRay/SOME/IP and DoIP UDS diagnostics/ECU flashing/CCP/XCP calibration Embedded code generation/Application builder Encrypted release/Logging and bus replay Graphical programming/Residual bus simulation C and Python scripting

Bus monitoring/Transmiting/Automated testing

• EOL Testing Equipment

• Durability Testing Solutions

Motor Performance

FCT

Hardware

1/2/4/8/12-channel CAN FD/CAN to USB/PCIe device

1/2/6-channel LIN to USB/PCIe device

Multi channel FlexRay/CAN FD to USB/PCIe device

Multi channel automotive Ethernet/CAN FD to USB/PCIe device

Automotive Ethernet media conversion device (T1 to Tx)

Multi-channel CAN FD/Ethernet/LIN datalogger

TTS test systems

- -CAN FD/CAN/FlexRay/LIN communication boards
- -Relay and fault injection boards
- -Resistors for sensor simulation
- -Digital I/O, Analog I/O boards available

Solutions

- Bus Conformance
- Network Automation Testing System
- Charging Testing System
- EMB Calibration Testing Equipment
- Information Security Solutions
- Steer-by-Wire Chassis Testing Solutions

About TOSUN

The core product, TSMaster, is a comprehensive tool for automotive R&D, testing, production, and after-sales. It integrates essential functions with hardware support to streamline processes and ensure precision, making it ideal for automotive professionals.

Contact Us:

+86 21-5956 0506 sales@tosunai.com

website:

www.tosunai.com

